Data analysis and Geostatistics - lecture IX

The wonderful art of regression analysis

Multi-variate techniques

Have now finished data description and statistical testing

will now move to more advanced (multi-variate) techniques:

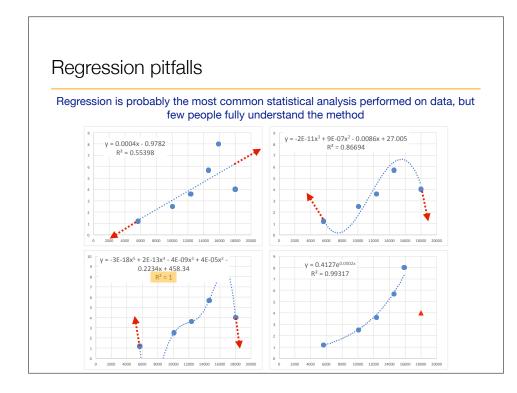
Regression analysis; quantitative description of trends in data - allows for interpolation and extrapolation beyond the input data

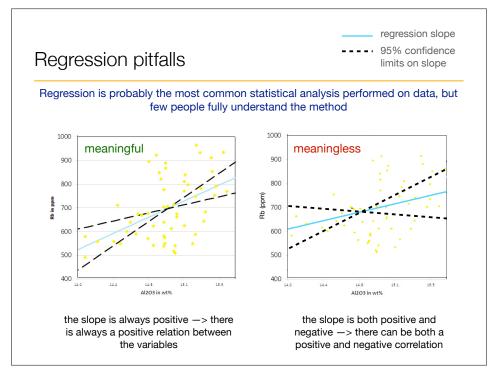
Discriminant function analysis; a means to differentiate groups in a data set - used to differentiate and classify

Principal component and factor analysis; determine directions in a data set to reduce the number of variables and/or look for processes in the data

Cluster analysis; group data into homogenous clusters - used to differentiate and to split up multi-modal data sets for use in other stat techniques

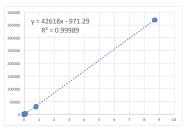
Spatial geostatistics; techniques for mining spatially distributed data

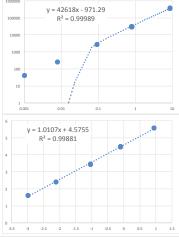




Regression pitfalls

Regression is probably the most common statistical analysis performed on data, but few people fully understand the method



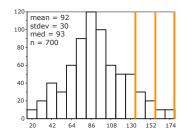


linear fit on the log-transformed data:

Regression analysis

The conc. of a heavy metal in soils from all over Europe:

determine the natural background so you can set pollution criteria



nice continuous distribution of the data; can describe it with a mean/median and stdev/IQR

conclusion:

spread is large in the data, but there are no clear signs of pollution

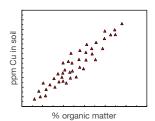
some samples were from heavily polluted sites, so why don't they jump out in the total data set?

unlikely to be one background value: will depend on soil type, composition etc

Regression analysis

The content of a heavy metal in soils from all over Europe:

organic matter content completely controls the conc of this heavy metal:



any soil with high organic matter content will have a natural enrichment

pollution will be an enrichment beyond that caused by organic matter

but how can we correct for the organic matter contribution?

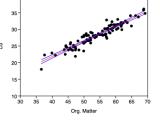
need to quantify the relation between organic matter and heavy metal content allows organic matter influence to be subtracted from the bulk composition so soils can be directly compared

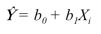
to quantify this relation: use regression analysis

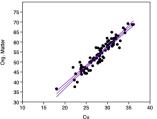
Regression analysis- linear model

conduct a regression analysis on this data set:

Identify the dependent and the independent variable







Cu = 0.455*Ora.Matter + 3.64

 $Y = b_0 + b_1 X$

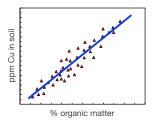
 $X = (Y - b_0) / b_1 =$

Org. Matter = 1.96*Cu + 1.18

Org. Matter = $-b_0/b_1 + 1/b_1Y$ 2.20*Cu - 8

Regression analysis- linear model

conduct a regression analysis on this data set:



$$\hat{\mathbf{Y}} = b_0 + b_1 X_i$$

where \hat{Y} = estimated value of Y at X_i

 b_0 = the intercept (Cu when no organics)

 b_I = the slope of the data array

X (% organic matter) is the independent variable, whereas Y (Cu content) is the dependent variable as it is a function of X

this regression equation is an estimate of the population equivalent:

$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$$

where ϵ_{i} is an uncertainty term related to the variance in the data

Regression analysis - assumptions

assumptions (or requirements) for linear regression analysis:

 ϵ_i - has to be normally distributed with a mean of 0 and variance σ_{ϵ^2}

equal distribution of points on either side of the regression curve as well as along the curve (throughout the data range)

i.e. the deviation from a perfect fit and should therefore be centred on your fit

for every value of X, the corresponding values of Y are normally distributed

if this is not the case: have to switch to a robust regression technique e.g. saturation level regression

 μ_Y for every X has to lie on a linear trend with σ_{ϵ^2} variance around this trend (when fitting a linear trend)

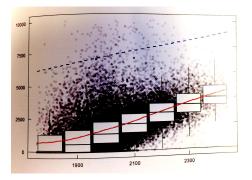
i.e. the μ_Y values should correctly describe the trend that you are modeling

Regression analysis - assumptions

assumptions (or requirements) for linear regression analysis:

 μ_Y for every X has to lie on a linear trend with $\sigma_{\!\epsilon^2}$ variance around this trend (when fitting a linear trend)

i.e. the μ_{Y} values should correctly describe the trend that you are modeling



Regression analysis - testing of the assumptions

assumptions (or requirements) for linear regression analysis that need to be tested:

- that the regression coefficients and the intercept are meaningful (if not, the non-significant ones need to be removed from the regression model)
- 2. that the overall model is significant (using an ANOVA analysis, R² is not sufficient)
- 3. that the assumptions are met (residual distribution)
- 4. that the model is not overly dependent on a single datapoint or variable; i.e. an outlier (Variance Inflation Factor)

Regression analysis - ANOVA

Let's have a look at the data uncertainties in regression analysis

original data have associated uncertainty:

 σ_{x^2} and σ_{y^2} , however σ_{y^2} is not independent:

$$\sigma_{v^2} = \beta_{1^2} \sigma_{x^2} + \sigma_{\epsilon^2}$$

where the first part describes the uncertainty explained by the regression and the second part the uncertainty that is not

The total deviation from the mean (i.e. the sum of squares) is of course preserved, so;

$$SS_{TOT} \ = \ SS_x + SS_y \ = \ SS_{\beta 1x + \beta 0} + SS_\epsilon \ = \ SS_{\hat{y}} + SS_\epsilon$$

where the latter two represent the deviation along the regression curve and the deviation around the regression fit respectively

Regression analysis - ANOVA

We can use the sums of squares to determine goodness-of-fit;

When $SS_{\hat{y}} >> SS_{\epsilon}$ you have a good regression fit as most of the variance resides in the regression and there is only minimal variance remaining around this curve

When $SS_{\hat{y}} \leq SS_{\epsilon}$ you have a poor regression fit as the deviation from your fit is equal or even larger than that along your fit

$$SS\hat{y} = \sum_{i=1}^{n} \left(\hat{Y}_{i} - \overline{Y} \right)^{2}$$

the deviation between the predicted and the mean of $Y = SS_{Regression}$

$$SS_{\varepsilon} = \sum_{i=1}^{n} (\hat{Y}_{i} - Y_{i})^{2}$$

the deviation between the predicted and real value of Y = SS_{Deviation}

Regression analysis - ANOVA

The ratio between SS_R and SS_{TOT} is an indicator for the goodness-of-fit; the coefficient of determination R²

$$R^2 = \frac{SS_R}{SS_{TOT}}$$

 R^2 = 1: perfect regression fit as regression describes the full variance in the data (SS_R = SS_{TOT})

 $R^2 \approx 0$: no fit as the regression part of the variance is negligible (SS_R << SS_{TOT})

Note: R ≠ r

both relate the variance along a trend to the total variance in your data, but they are based on different assumption and have different requirements on the input data!

Regression analysis - ANOVA

Distribution of variance in regression analysis

var source	sum of squares	d.f.	variance
regression	SSR	1	MS _R
deviation	SS_D	n - 2	MS_D
total	SS _{TOT}	n - 1	

MS = mean square

what are the d.f. for each contribution?

deviation: need β_1 and β_0 coefficients to determine the predicted value of Y, which you need for SS_D, so the d.f. = n - 2

regression: only 1 degree of freedom as the slope fixes the relation between the variables; can only shift curve up or down

total d.f.: essentially the deviation in Yi from the mean of Y, so n - 1

Regression analysis - ANOVA

var source	sum of squares	d.f.	variance
regression	SS _R	1	MS _R
deviation	SS_D	n - 2	MS_D
total	SS _{TOT}	n - 1	

MS = mean square

variance = sum of squares divided by the degrees of freedom:

$$s_D^2 = MS_D = SS_D / n-2$$
 and $s_R^2 = MS_R = SS_R / 1$

This can be used to determine whether the regression fit is significant following our earlier ANOVA approach:

MS_R has to be significantly larger than MS_D at alpha:

F-test on the ratio of MS_R and MS_D (H_0 ; $MS_R = MS_D$)

Regression analysis

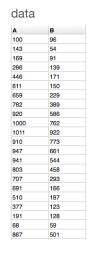
What if the fit is not significant?

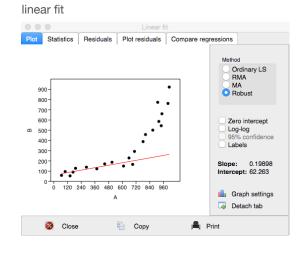
- 1. there is no correlation between the variables plot the data in a scatter diagram and check
- 2. the correlation is weak and not significant due to lack of data obtain more data or accept a larger value of alpha
- 3. the data are correlated, but the correlation is not linear repeat the same exercise using a more appropriate curve:

quadratic: $Y = b_1X + b_2X^2 + b_0$ exponential: $Y = b_0 EXP(b_1X)$ reciprocal: $Y = 1 / (b_1X + b_0)$

multiple linear: $Y = b_1X_1 + b_2X_2 + b_3X_3 + b_0$

Linear regression with the statistics package PAST





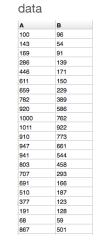
Linear regression with the statistics package PAST

8.1654

p (uncorr.):

Permutation p: 0.0001

8.4854E-08



linear fit - statistics Ordinary Least Squares Regression: A-B 0.72275 0.088514 Slope a: Std. error a: -91.552 Std. error b: 59.84 Intercept b: 95% bootstrapped confidence intervals (N=1999): (0.53344, 0.89646) Slope a: Intercept b: (-162.44, 51.446) Correlation: 0.87707 r: r2: 0.76925

Linear regression with the statistics package PAST

data

	A	В
ŀ	100	96
ŀ	143	54
ŀ	169	91
	286	139
ŀ	446	171
	611	150
	659	229
	782	389
!	920	586
Ŀ	1000	762
	1011	922
	910	773
1	947	661
	941	544
	803	458
	707	293
	691	166
	510	187
ŀ	377	123
	191	128
1	68	59
	867	501

linear fit: are the coefficients significant?

Ordinary Least Squares Regression: A-B

Slope a:	0.72275	Std. error a:	0.088514
Intercept b:	-91.552	Std. error b:	59.84

95% bootstrapped confidence intervals (*N*=1999): (0.53344, 0.89646)

Intercept b: (-162.44, 51.446)

H₀;
$$a = 0$$
, $b = 0$ $t_{\alpha,df} = (a - 0) / stdev$
H_A; $a \neq 0$, $b \neq 0$ $t_{\alpha,df} = (b - 0) / stdev$

t (slope)
$$_{calc}=~8.16~>~t_{~\alpha,df}=2.08~~->$$
 reject H_0

t (intercept) calc = $-1.59 < t_{\alpha,df} = -2.08$ -> accept H₀

Linear regression with the statistics package PAST

data

Α	В	Regress.	Residual
100	96	-19.278	115.28
143	54	11.8	42.2
169	91	30.592	60.408
286	139	115.15	23.847
446	171	230.79	-59.792
611	150	350.05	-200.05
659	229	384.74	-155.74
782	389	473.63	-84.635
920	586	573.37	12.627
1000	762	631.19	130.81
1011	922	639.14	282.86
910	773	566.15	206.85
947	661	592.89	68.112
941	544	588.55	-44.551
803	458	488.81	-30.812
707	293	419.43	-126.43
691	166	407.86	-241.86
510	187	277.05	-90.048
377	123	180.92	-57.923
191	128	46.492	81.508
68	59	-42.406	101.41
867	501	535.07	-34.068

linear fit: is it significant?

$$SS_{D} = \sum_{i=1}^{n} (\hat{Y}_{i} - Y_{i})^{2} = SS_{Residua}$$

$$SS_{D} = \sum_{i=1}^{n} (\hat{Y}_{i} - Y_{i})^{2} = SS_{Residual}$$

$$SS_{R} = \sum_{i=1}^{n} (\hat{Y}_{i} - \overline{Y})^{2} \quad \text{mean Y} = 340$$

$$SS_{TOT} = SS_R + SS_D \qquad R^2 = \frac{SS_R}{SS_{TOT}}$$

SS_D	345975	
SS_R	1153347	$R^2 = 0.77$
SSTOT	1499321	

Linear regression with the statistics package PAST

var source	sum of squares	d.f.	variance
regression	$SS_R = 1153347$	1	$s^2R = 1153347$
deviation	$SS_D = 345975$	n - 2 = 20	$s^2D = 17299$
total	$SS_{TOT} = 1499321$	n - 1 = 21	

$$s^{2}D = SSD / n-2$$
 and $s^{2}R = SSR / 1$

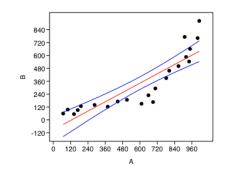
For the regression model to be meaningful, s²R has to be significantly larger than s2D at your chosen confidence level:

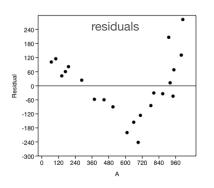
F-test on the ratio of s^2R and s^2D (H₀; $s^2R = s^2D$)

 $F_{calc} = 66.67 > F_{0.05,1,20} = 4.35$ The model is meaningful

Linear regression with PAST

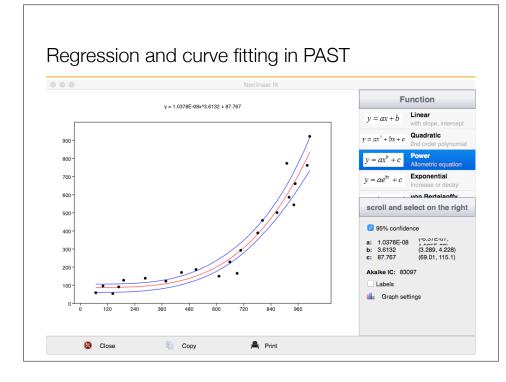
F-ratio is sufficiently high that we can reject the H₀ hypothesis: the regression fit explains a significant part of the total variance and is therefore meaningful





Appropriate fit for this dataset Even though the linear regression fit is significant, it is not necessarily the most appropriate fit for the data 3rd polynomial fit linear fit $R^2 = 0.77$ $R^2 = 0.94$ 800 720 700 600 600 480 360 400 240 300 120 200 120 240 360 480 600 720 840 960 120 240 360 480 600 720 840 960

Cubic regression with PAST Polynomial regression, order 3 residuals 160 77520 120 Akaike ICc: 77531 77528 Akaike IC: 0.9483 110.05 9.0859E-12 15.4322 -80 0.803255 -120 a2: -0.0021042 -160 2.11066E-06 100 200 300 400 500 600 700 800 900 Equation: 2.111E-06x3-0.002104x2+0.8033x+15.43 F-ratio is higher than before: a more significant model for the data.



Multiple linear regression with PAST

the dependent is a linear combination of many independents:

Chance of obtaining this result purely by chance: 1 / 100000000000

the composition of a soil will be the sum of the compositions of its constituents multiplied by their respective fraction in the soil:

	clay	quartz	plag	micas	organic
Cu	25	0	5	120	2500
Pb	16	0.1	50	260	1200
Ni	8	0	3	14	890
Co	2	0	1	4	651
Zn	40	0.5	23	64	2200
Zr	8	4	16	4	56
Ti	120	8	8	140	80

$$Cu(soil) = X_{clay}*25 + X_{qtz}*0 + X_{plag}*5 + X_{micas}*120 + X_{organic}*2500$$

Multiple linear regression with PAST

can derive the phase fractions by multiple linear regression

	element	clay	quartz	plag	micas	organic	C7	soil	weight
1	Cu	25	0.2	5	120	2500		900	0.02
2	Pb	16	0.1	126	260	1200		470	0.04
3	Ni	8	0.1	3	14	890		300	0.01
4	Co	2	0.2	1	4	651		200	0.06
5	Zn	40	1	23	64	2200		800	0.08
6	Zr	8	4	16	4	56		25	0.04
7	Ti	120	8	8	120	80		90	0.02
8	Rb	60	0.1	12	250	2		60	0.01
9	Sr	12	0	451	26	4		34	0.09
10	Ba	4	0	26	154	36		38	0.06
11	U	12	2	3	19	58		28	0.05
12	Th	5	0.5	1	7	56		20	0.01
13	Sc	264	0	5	48	17		106	0.05
14	V	4	0.2	2	26	298		110	0.04
15	Cr	8	0.3	3	56	300		120	0.07
		independents					lepender	nt	

Multiple linear regression with PAST

can derive the phase fractions by multiple linear regression

Pearson correlation coefficient matrix

	soil	clay	quartz	plag	micas	organics
soil		-0.07093	-0.1874	-0.10406	0.22475	0.9935
clay	-0.07093		0.19781	-0.1328	0.09296	-0.16353
quartz	-0.1874	0.19781		-0.16519	-0.047386	-0.20439
plag	-0.10406	-0.1328	-0.16519		0.011717	-0.11858
micas	0.22475	0.09296	-0.047386	0.011717		0.16225
organics	0.9935	-0.16353	-0.20439	-0.11858	0.16225	

potential problem: organics strongly dominant control on soil composition

Multiple linear regression with PAST

can derive the phase fractions by multiple linear regression

The regression model:

Statistics	Numbers				
	Coeff.	Std.err.	t	р	R^2
Constant	-7.0992	4.7446	-1.4963	0.1688	
clay	0.37006	0.040004	9.2507	6.8155E-06	0.0050311
quartz	0.91549	1.2806	0.71487	0.49282	0.035118
plag	0.067332	0.023663	2.8455	0.01923	0.010829
micas	0.17703	0.031772	5.5718	0.00034656	0.050512
organics	0.3499	0.0034672	100.92	4.6722E-15	0.98703

regression

t-test on coeff. contribution to R²

probability that coefficient is 0

Multiple linear regression with PAST

can derive the phase fractions by multiple linear regression

The regression model:

 Dependent variable:
 soil

 N:
 15

 Multiple R:
 0.99961

 Multiple R2:
 0.99921

 Multiple R2 adj.:
 0.99877

ANOVA

F: 2278.7 df1, df2: 5, 9 p: 1.1272E-13 very high F_{calc}

Multiple linear regression with NCSS

Regression Coefficient Section									
Independent	Regression	Standard	Lower	Upper	Standardized				
Variable	Coefficient	Error	95% C.L.	95% C.L.	Coefficient				
Intercept	-7.9852	5.5681	-20.5812	4.6108	0.0000				
clay	0.3746	0.0414	0.2810	0.4682	0.0936				
micas	0.1830	0.0410	0.0902	0.2757	0.0464				
organic	0.3511	0.0038	0.3425	0.3596	1.0024				
plag	0.0687	0.0199	0.0237	0.1138	0.0377				
quartz	1.3770	1.7871	-2.6656	5.4197	0.0081				

Note: The T-Value used to calculate these confidence limits was 2.262

Analy	SIS	01	Vari	ance	Section	n

			Sum of	mean		Prop	Power
Source	DF	R2	Squares	Square	F-Ratio	Level	(5%)
Intercept	1		32007.96	32007.96			
Model	5	0.9991	49992.77	9998.555	1958.801	0.0000	1.0000
Error	9	0.0009	45.93982	5.104425			
Total(Adjusted)	1.4	1.0000	E0039.71	3577.107			

Regression Equation Section	

Independent Variable	Regression Coefficient b(i)	Standard Error Sb(i)	T-Value to test H0:B(i)=0	Prob Level	Reject H0 at 5%?	Power of Test at 5%
Intercept	-7.9852	5.5681	-1.434	0.1854	No	0.2501
clay	0.3746	0.0414	9.050	0.0000	Yes	1.0000
micas	0.1830	0.0410	4.461	0.0016	Yes	0.9767
organic	0.3511	0.0038	92.938	0.0000	Yes	1.0000
plag	0.0687	0.0199	3.454	0.0072	Yes	0.8662
quartz	1.3770	1.7871	0.771	0.4607	No	0.1063
, ,						

Multiple linear regression with NCSS - checks

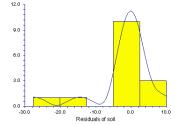
From	From
PRESS	Regular
Residuals	Residuals
1521.904	1112.096
97.44209	68.4433
0.9987	0.9994
	PRESS Residuals 1521.904 97.44209

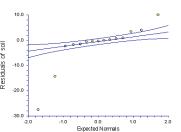
Multicollinearity Section

	Variance	
Independent	Inflation	
Variable	Factor	Tolerance
claγ	0.9857	0.9544
micas	0.8743	0.9445
organic	0.8817	0.8768
plag	0.9257	0.8552
quartz	0.9447	0.9193

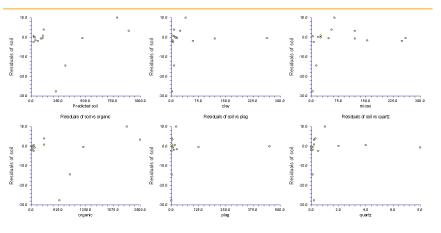
no significant difference between regular and PRESS R²

no significant variance inflation (VIF < 5-10) and tolerance close to 1 residuals are normally distributed





Multiple linear regression with NCSS



no trends between the residuals and the (in)dependent variables

very good regression fit that satisfies all the requirements for regression

Regression summary

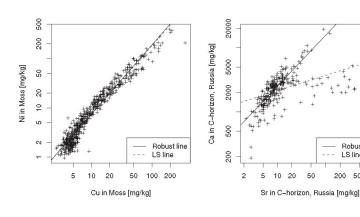
Regression analysis allows you to define a model for your data that is predictive (both interpolative and extrapolative)

However, have to test that the model is meaningful by testing:

- that the regression coefficients and the intercept are meaningful (if not, the non-significant ones need to be removed from the regression model)
- 2. that the overall model is significant (using an ANOVA analysis, R^2 is not sufficient)
- 3. that the assumptions are met (residual distribution)
- that the model is not overly dependent on a single datapoint or variable

Robust regression

Deviations from normality, such as outliers, can have a major impact on regression coefficients and invalidate results. Unfortunately such datasets cannot always be avoided: use robust regression

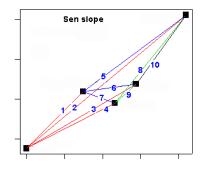


Robust regression - Sen slope

One type of robust regression, which is especially suited to small sets of data is the Sen slope:

The Sen slope involves calculating the slope of each combination of two data points, and then taking the median of these slopes as the robust characteristic slope

slope = $\Delta x / \Delta y$ for 5 data points: 10 slopes Sen slope = median(10 slopes)



Robust regression - Sen slope

date 5-Dec 6-Dec 7-Dec 8-Dec 9-Dec 10-Dec 11-Dec 12-Dec	35 98 45 52 67 2 76 83	Spending	900 - 800 - 700 - 600 - 500 -	LS slope: 19.6 Sen slope: 10.1
13-Dec 14-Dec 15-Dec 16-Dec 17-Dec 18-Dec 19-Dec 20-Dec 21-Dec 22-Dec 23-Dec 24-Dec	84 90 112 144 12 152 166 185 208 360 810 250	Sper	400 - 300 - 200 - 100 - 0 - 5	LS slope: 8.6 Sen slope: 9.1 10 15 20 25 December