
Data analysis and Geostatistics - lecture VI

t-test of means, ANOVA and goodness-of-fit

Statistical testing - probability of a value

Z- and t-test can be used to determine the prob of a value
Commonly use the mean to avoid problems associated with deviations 

from normality, plus uncertainty on mean is smaller: stronger statements

Zi = (μC - μ) / SE ti = (x - μ) / SE
_

e.g. given 10 sandstone samples with the following porosities:

           13, 17, 15, 23, 27, 

           29, 18, 27, 20, 24

x = 21.3     s = 5.52

n = 10        se = 1.75

is it possible that this set is from a population with μ > 18 ?

H0;  μ ≤ 18

HA;  μ > 18

tcalc = (21.3-18)/1.75 = 1.89

t0.05;9 = 1.83

_

v

Statistical testing - comparing means

What if we repeat this sampling and want to compare them?
two sets of sandstone samples with the following porosities:

x = 21.3     s2 = 30.46

n = 10      

H0;  μ1 = μ2

HA;  μ1 ≠ μ2

x = 18.9     s2 = 23.21

n = 10      

__

are they from the same population?

ti = {(x1 - μ1) - (x2 - μ2)} / SE
_ _

ti = (x1 - x2) / SE
_ _

for μ1 = μ2 :

but what error do we use ? That of set 1 or that of set 2 ?

will have to use a combination of both, in the proportion to the number 
of samples in each set: more samples: stronger control on error

Statistical testing - pooled standard deviation

combined standard deviation is called the pooled stdev - sp

add the variance in proportion to the df in each set: if n1 > n2, s1 will 
dominate the pooled stdev and vice versa

So, in this example: ti = (x1 - x2) / SE
_ _

H0;  μ1 = μ2

HA;  μ1 ≠ μ2

sp = 5.18

se = 2.32

tcalc = 1.03


df = n1 + n2 - 2  (why?)

t0.05;18 = 1.734

x

_
x = 21.3     s2 = 30.46

n = 10      

x = 18.9     s2 = 23.21

n = 10      

_



Requirements for t-test

When conducting a t-test, you assume the following:

1. samples have been taken randomly

so if sampled by two geologists: no 
preference in what they sampled 


2. sample sets normally distributed

if not: use the means and se 


3. sample sets have equal variance

so σ1 = σ2

A

B

Of these, the third is the most crucial. If we have a marked deviation from 
equality of variance: have to switch to another test (rank-based)


so how do we determine if the data fulfill this requirement ?

The F - test

To determine the (in)equality of the variance in two datasets: 

Test the ratio of the variance against the F - distribution


if it exceeds a critical F at your chosen α: not equal

if it doesn’t: no reason to assume that the variances are different

So what are the hypotheses for this test ? H0;  σ1 = σ2

HA;  σ1 ≠ σ2

Testing always works in exactly the same way: you have a probability 
distribution, be it the Z-, t- or F-distribution. If your calculated value for 
Z, t or F exceeds the probability level α: reject H0

F = (s1)2 / (s2) 2
depends on the df of both 
set 1 and set 2

what is the df in this case ?

see table 2.5, p 412

The F - test

So for our sandstone porosity example:

x = 21.3     s2 = 30.46

n = 10      

x = 18.9     s2 = 23.21

n = 10      

Did we meet all the requirements of the t-test ?

F = (s1)2 / (s2) 2


by convention: s1 
> s2


F = 30.46 / 23.21 

   = 1.31

from table 2.5:


F0.05;9;9 = 3.18

H0;  σ1 = σ2

HA;  σ1 ≠ σ2

hypotheses for the F - test are:

so ?

no reason to reject 
H0 as the calculated 
F value does not 
exceed the F0.05;9;9

σ1 = σ2

_

_

Mann-Whitney test for non-normal data

A t-test uses mean and standard deviation and can thus only be applied to 
data that fit the normal distribution, or that can be mathematically transformed 
to a normal distribution. 

To test equality of datasets that are not normally distributed, we can use 
the robust equivalent: the Mann-Whitney test.

Instead of using the mean, as in the t-test, we compare medians, which are 
robust. And we use the rank of a value, rather than its actual value. 


We subsequently calculate the Mann-Whitney statistic for our datasets and 
compare this to tabulated critical values to reach our conclusion



Mann-Whitney test for non-normal data

H0;  med1 = med2

HA;  med1 ≠ med2

are two sets of data from the same population?

dataset A

conc Cu

dataset B

conc Cu

value rank 
(dataset A)

value rank 
(dataset B)

20 19 4 3

14 34 2 8

25 28 5 6

32 41 7 10

11 36 1 9

nA = 5

nB = 5

T = ∑ R(Ai) - nA•(nA+1) / 2 

T = 19 - 5•(5+1) / 2 = 4

Tcritical (df = 5,5) = 2 to 4

at confidence level = 5%

cannot reject the null 
hypothesis: from same 

population

An extension of the t-test 

The approach breaks down when there are a large number of data sets to compare

Need to do a t-test and a F-test for each combination:

σ1 = σ2       F - test

σ1 = σ3       F - test

σ2 = σ3       F - test

x1 = x2       t - test
_ _

x2 = x3       t - test
_ _

x1 = x3       t - test
_ _

&

For three data sets this is still doable, but if you have five, there are already 
10 combination of sample means and stdevs that you need to test

and at α = 0.10, on average one of these would give you a

 significant difference purely by chance !

Better to switch to another type of testing: analysis of variance - ANOVA

Analysis of variance - ANOVA

ANOVA may seem daunting, but conceptually it is not difficult

e.g. in northern Spain, metamorphism has overprinted all evidence of 
depositional environment in a series of limestones. However, you wonder if the 

δ13C signature may still preserve this information


need to determine first of all if there are differences between these marbles

and only then see if you can link them to environment

for differences to be significant, the variance within 
each unit has to be smaller than the variance between 

the units


otherwise your possible signal is lost in the noise

Analysis of variance - ANOVA

The analytical data for the four marble units:

unit 1 unit 2 unit 3 unit 4
-3 +3 -3 +4
+3 -1 -6 +7
-1 -2 -2 -1
-1 +4 +2 +1
+4 0 -3 +6
-4 -3 -4 +3
+2 +5 0 0
0 +4 -7 +8

mean 0 1.25 -2.88 3.5
s2 8 9.6 8.7 11.1
n 8 8 8 8

SS 56 67.5 60.9 78
difference between needs to 

exceed difference within
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So, let’s analyze the variance in this data-set - 3 types;

Analysis of variance - ANOVA

1. total variance in the data


lump all the samples together into one big sample and calculate the 
variance in the full data set:


n = 8 + 8 + 8 + 8 = 32             d.f. = n - 1 = 31           mean = 0.47


s2 =                 =  13.9             SSTOT = Σ (xi - x)2 = 432
Σ (xi - x)2
df

_ _

So, let’s analyze the variance in this data-set - 3 types;

Analysis of variance - ANOVA

2. within variance of the data set


the spread in each unit combined in a pooled variance in proportion to 
the df of each sample set (in this case equal for each unit): 

df = n - 1 = 7

SS = s2 .  df

s2 = (56.0 + 67.5 + 60.9 + 78.0) / (7 + 7 + 7 + 7) = 262.4 / 28 = 9.4

So, let’s analyze the variance in this data-set - 3 types;

Analysis of variance - ANOVA

3. between variance of the data set


the variance in between the units - we can calculate that from the 
variance on their means:  

df = m - 1 = 3

SS = s2 .  df

se2 = s2 / n  ->  s2 = n . se2

s2 = n . se2 = 8 . 7.1 = 56.5

se2 = 21.2 / 3 = 7.1
in SS notation:                  = 21.2 x 8

3
169.6

3

We can also summarize this information in a table:

Analysis of variance - ANOVA

sum of squares d.f. variance

between 169.6 3 56.5

within 262.4 28 9.4

total 432 31 13.9

note: conservation of sum of squares and degrees of freedom

      SS very useful property, conservation of df makes sense (I hope)

from this it is already clear that the variance between the units is much 
larger than that within each unit, or the total variance of the data:


suggests that there is indeed a significant difference between these 
units



The hypotheses for this example and what to test:

Analysis of variance - ANOVA

assumptions are equal to those of the t-test:   variance is the same

if H0 = true; the variance between 
units is indistinguishable from that 
within each unit, so no difference 
between units


if H0 ≠ true; the variance within each 
unit will not change, but variance 
between them and the total variance 
will increase and exceed within var

H0;  μ1 = μ2 = μ3 = μ4

HA;  one of these is not equal, because derived from other pop

So how do we test our hypotheses ?

if  sbetween < swithin : all the same

    sbetween > swithin : different at level α

test this with the F-test:      F = s2between / s2within       at  df 3 and 28

                                                      α = 0.05

critical F ~ 3


calculated F = 6

so, in this case the F 
exceeds the critical F:

reject the H0 that there are no significant differences between the units:

can segregate them based on δ13C

Analysis of variance - ANOVA

ANOVA - Analysis of variance

ANOVA can be extended to as many variables as you like

In previous example: only interested in the differences between the units

 one variable: one-way ANOVA

However, we may be interested in more than one variable

differences between 
the 4 marble units

differences between 
the laboratories that 
analyzed the samples

differences between 
the geologists who 
sampled them

ANOVA - Analysis of variance

An example: 4 geologists determined the Cu content in 3 units:

geologist
formation I II III IV

1 30 70 30 30
2 80 50 40 70
3 100 60 80 80

Is the Cu content different in the different units?

Is there any difference between the geologists?

H0;  μI = μII = μIII = μIV


H0;  μ1 = μ2 = μ3


HA;  one of these is not equal

2 null-hypotheses:



ANOVA - Analysis of variance

Should assess the variance at the same time, because both 
variables will affect the variance and the data are the same

sum of squares degrees of freedom variance

between units SSA 3-1 s2A

between geol SSB 4-1 s2B

within/residual SSR (4-1).(3-1) s2R

total SSTOT (4.3)-1 s2TOT

Hypothesis 1;     s2between geol > s2within 


Hypothesis 2;     s2between units > s2within

s2within is the variance inherent in 
the data: not explained by diff in 
unit or geologist: residual

ANOVA - Analysis of variance

Input the data into PAST with two factors: unit and geologist

sum of 
squares

degrees of 
freedom variance F-ratio F-crit

between geol 3200 2 1600 4 5.14
between units 600 3 200 0.5 4.76
within/residual 2400 6 400

total 6200 11

From this it is clear that the variance between units is smaller than the within 
variance, but this is not true for the variance between geologists


However, at α = 5%, neither exceeds the critical probability: all are the same

ANOVA - Analysis of variance

Input the data into PAST with two factors: unit and geologist

Can also change the question, at what probability are they the same or 
what is the confidence of my conclusion that they are the same ? 

Most stats software, including PAST, provides this information as well (and sometimes 
only this information)

sum of 
squares

degrees of 
freedom F-ratio F-crit p (same)

between geol 3200 2 4 5.14 0.08
between units 600 3 0.5 4.76 0.70
within/residual 2400 6

total 6200 11 α = 0.05

Rank testing of differences of the mean

To conduct an ANOVA test we have to fulfill the same 
requirements as for the t-test:

What if this condition is not met ?

Have to switch to robust testing: i.e. rank testing:


Mann-Whitney test   < - >   t-test


Kruskal-Wallis test   < - >   ANOVA


to find out more about these and how to apply them:  4.2.2 and 4.2.3

most important of these is equality of variance:    
σ1 = σ2 = σ3 = σ4



Testing of “goodness-of-fit” 

in a lot of cases we want to compare curves, not values

Some examples;


‣   are my data normally distributed ? 

  is there a significant difference between my data distribution and that   

  of the normal distribution

‣   does my model accurately represent the data ? 

  is there a significant difference between my predicted data values and

  the observed ones

‣   can my minerals/species explain the observed spectrum ? 

  is there a significant difference between my predicted spectrum and

  the observed one

Fit between measured and predicted spectrum

Testing of “goodness-of-fit” 

comparison of curves: predicted and observed values

the cumulative discrepancy between the predicted and observed values is 
a measure of the goodness-of-fit


if this exceeds a critical value: can reject the fit that we are testing
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45 46 47 48 49 50 51 52

this is the Chi-squared (X2) test:

with Oi = observed value of i

and Ei = predicted value of i

2

Testing of “goodness-of-fit” 

The Chi-squared distribution

The Chi-squared test has a very easy formulation and can be applied 
equally to parametric and non-parametric data (i.e. it is robust)


as in all other tests we then compare our calculated Chi-squared to a 
tabulated critical value for a given confidence level to reach our conclusion

in this case we test against the Chi-squared distribution

see table 2.6 on page 413

X2

prob df = 4

df = 10



Testing of “goodness-of-fit” 

An example: testing of normality of a data set

requirements for testing:


‣  more than 5 samples per class

‣  more than 3 classes

‣  convert data to Z-scores

x = 2.58     s = 0.0195       n = 50      
_

we will convert the histogram into 4 
classes and shift the data with x-μ/σ

Does the following datas ste show significant deviation from normality ?

Testing of “goodness-of-fit” 

Deriving the observed and expected occurrence of data:

< -1

-1 to 0

0 to +1


> +1

Z class

6

20

18

6

observed
can now determine 
the probability for 

each Z class from the 
normal distribution

50N

0.16

0.34

0.34

0.16

prob.

1.00

7.93

17.07

17.07

7.93

expected

50

Can then use these data to calculate the Chi-squared value: 1.494

Now need to know the critical value at say a confidence level of 0.05:

what is the number of df for this test ?


df = no. of classes - parameters required to describe the pop (x,s) - N = n - 3

X20.05:1 = 3.84 : calc does not exceed it : no reason to reject normality

_

Testing of “goodness-of-fit” 

Calculating the confidence interval on the stdev using the X2

The Chi-squared distribution is derived 
from the Z-scores:

and because of this relation we can use it to determine the confidence 
interval on the stdev or variance:

So, for a confidence level of 90%, 
or α = 0.10, this becomes:

<<

<<

Testing of “goodness-of-fit” 

An example of the confidence interval for the stdev:

a standard has been analyzed 20 times:     s = 0.8%

What is the confidence interval for the standard deviation of this 
technique at α = 5% ?

s = 0.8%

n = 20

df = 20-1 = 19

. . . .
0.61 1.17

<<

<< << <<


