
Data analysis and Geostatistics - lecture V

Statistical testing 

Correlation coefficients - indicator of covariance

Pearson —> normally distributed data, Spearman —> all others
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Correlation coefficients matrices - significance

But are these r values meaningful? 
In statistical terms: are they significantly different from r = 0


there will be a critical r value above which it is significant

Li Be B V

Li

Be

B

V

Li logBe B logV

Li 1 0.7 0.5 -0.3

logBe 0.7 1 0.6 -0.5

B 0.5 0.6 1 -0.4

logV -0.3 -0.5 -0.4 1

Statistical testing: the student-t test of r

What values of r are meaningful for a given confidence level

When calculated t > critical t

significant correlationt = r           n - 2

1 - r2

t depends on the number of samples and the desired confidence interval


‣  the more samples, the smaller the uncertainty on your r-value                
less uncertainty on deciding whether something is significant


‣  the confidence level governs how strong your statements will be:
95% - wrong conclusion in 1 out of 20 cases

98% - wrong in 1 out of 50 cases

Have entered the field of statistical testing....



Statistical testing - confidence intervals

So why do we do statistical testing ?

In general you want to make a statement about your data:

these variables are correlated

the stdev on the mean of this samples set is 10%


However, in statistics we cannot make such statements as we can never 

     be 100% sure:   provide a confidence level: alpha

alpha is up to the researcher to select! There are no “accepted” values 
and the choice depends strongly on the specific circumstances.

e.g. when mining sector is up:  alpha ~ 0.80

         down:  alpha ~ 0.05

why?    at low alpha rarely wrong, but you don’t find much. 

             at high alpha, will find everything, but are commonly wrong

Confidence levels
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Statistical testing - hypothesis testing

So in the case of our correlation analysis:

Setting the confidence interval at alpha = 0.05   (or 5%);

if we conclude that there is a correlation: will be wrong in 5% of cases

but how do we conclude this?  

Hypothesis testing:  test at     -level

In statistics, we cannot prove anything, can only disprove things!


have to choose your hypotheses carefully

α
reject

accept

Statistical testing - hypothesis testing

So in the case of our correlation analysis:

cannot test the presence of correlation but we can test for the absence 
of correlation between the variables:


r = 0
reject, r ≠ 0, so there is a correlation between the vars

accept, at this confidence interval there is no 
significant correlation between the variables

hypotheses:      H0: hypothesis to be tested    r = 0

                          Ha: alternative hypothesis       r ≠ 0

In most cases you will be testing the negative conclusion; there is no 
correlation, there is no difference between two groups, etc.



Statistical testing - hypothesis testing

When testing hypotheses there are 4 possible outcomes;

type I error:   we conclude there is a correlation where there is in fact none:

                      this is the confidence interval we select: alpha

r = 0 r ≠ 0
reject H0 type I error OK
accept H0 OK type II error

type II error:  no reason to reject H0, so we conclude r = 0, whereas in  

      reality there is a correlation between the variables: beta

Statistical testing - hypothesis testing

we can only disprove statements in stats, so only a rejection of 
H0 results in a strong conclusion

we’re willing to accept a number of incorrect rejections and control that with the 
confidence interval we choose ( beforehand of course! )

barren non-barren
reject H0 alpha $$$$
accept H0 OK beta

but if we cannot reject our H0, the conclusion is weak: there is clearly a possibility 
that the statement is wrong, but we have no control over that: type II error

mining company:      H0: prospect = barren

                                  Ha: prospect ≠ barren   $$$$

Statistical testing - degrees of freedom

statistical tests depend on the number of samples

However, 

when testing we’re always working with a sample and not the full population


this means;

the parameter that we are testing has been derived from our dataset


 it has been estimated from the same data that we use to test it


cannot use all the data, because then we would be using data double

Corrected by using the degrees of freedom instead:


degrees of freedom (d.f.) are the no of observations or data remaining after 
estimating the parameter(s) to be tested

Statistical testing - degrees of freedom

some examples;
1)  the standard deviation;

5 data points: n = 5

determine the mean of this dataset:      ∑(xi)/n

now determine the variance:                  ∑{(xi - mean)2}

    this uses the mean that we estimated from the data, therefore only 4  

    independent values:  x5 = 5*mean - x1 - x2 - x3 - x4


so we have 4 degrees of freedom:

s2 = 
S (xi-x)2

n - 1s2 = 
S (xi-m)2

n



Statistical testing - degrees of freedom

some examples;
2) testing of the correlation coefficient

calculated from both the mean in x and the mean in y, so to derive 
the correlation coefficient, two degrees of freedom have already 
been consumed:


test against n - 2 degrees of freedom

t = r           n - 2
1 - r2sxsy r = covxy 

Statistical testing - significance of r

an example of significance testing of the correlation coefficient:

t = r           n - 2
1 - r2

with d.f. = n - 2   and t α;d.f.

Our hypotheses:      H0:   r = 0,  if true, no significant correlation

                                 Ha    r ≠ 0,   cannot reject the absence of correlation

Let’s say:   n = 25, so d.f. = 23

   α = 0.05

    r    = -0.34

tcalc = -1.73


t 0.05;23 =


When calculated t > critical t

significant correlation

Statistical testing - significance of r

an example of significance testing of the correlation coefficient:

df alpha	=	0.1 0.05 0.025 0.01 0.005 0.001 0.0005
1 3.078 6.314 12.71 31.82 63.66 318.3 636.6
5 1.476 2.015 2.571 3.365 4.032 5.894 6.869
10 1.372 1.812 2.228 2.764 3.169 4.144 4.587
15 1.341 1.753 2.131 2.602 2.947 3.733 4.073
16 1.337 1.746 2.120 2.583 2.921 3.686 4.015
17 1.333 1.740 2.110 2.567 2.898 3.646 3.965
18 1.330 1.734 2.101 2.552 2.878 3.610 3.922
19 1.328 1.729 2.093 2.539 2.861 3.579 3.883
20 1.325 1.725 2.086 2.528 2.845 3.552 3.850
21 1.323 1.721 2.080 2.518 2.831 3.527 3.819
22 1.321 1.717 2.074 2.508 2.819 3.505 3.792
23 1.319 1.714 2.069 2.500 2.807 3.485 3.768
24 1.318 1.711 2.064 2.492 2.797 3.467 3.745
25 1.316 1.708 2.060 2.485 2.787 3.450 3.725

                  n = 25, so d.f. = 23;    α = 0.05

Statistical testing - significance of r

an example of significance testing of the correlation coefficient:

t = r           n - 2
1 - r2

with d.f. = n - 2   and t α;d.f.

Our hypotheses:      H0:   r = 0,  if true, no significant correlation

                                 Ha    r ≠ 0,   cannot reject the absence of correlation

Let’s say:   n = 25, so d.f. = 23

   α = 0.05

    r    = -0.34

tcalc = -1.73

t 0.05;23 = 1.71 = -1.71


tcalc exceeds t 0.05;23        ->  reject H0

in this example we can reject the H0: so we can make the strong statement that 
at the 5% confidence level, there is a significant correlation between the vars



Statistical testing - significance of r

what if we want to be more certain ?

Our hypotheses:      H0:   r = 0,  if true, no significant correlation

                                 Ha    r ≠ 0,   cannot reject the absence of correlation

Let’s say:   n = 25, so d.f. = 23

   α = 0.025

    r    = -0.34

tcalc = -1.73

t 0.05;23 = 1.71 = -1.71

t 0.025;23 = 2.07 = -2.07


tcalc exceeds t 0.05;23        ->  reject H0

tcalc doesn’t exceeds t 0.025;23       ->   

         cannot reject H0

we can now only conclude that we have no reason to reject the absence of 
correlation, which is clearly not as strong a statement

Statistical testing - the steps

Define a hypothesis to test
in statistics only a hypothesis rejection is a strong statement: have to choose 
your hypothesis carefully (example: white swans - black swans)

1.

Statistical testing - the steps

Define a hypothesis to test
in statistics only a hypothesis rejection is a strong statement: have to choose 
your hypothesis carefully (example: white swans - black swans)

1.

Decide on a confidence level
you cannot be 100% certain, because the chance of an unlikely event is small, 
but never zero: have to select a desired level of confidence

2.

at α = 5%, you accept to reach the wrong conclusion in 1 out of 20 cases

at α = 2%, it is 1 out of 50 cases

so what do you choose ? depends very much on the situation 

identifying cheating schoolteachers: you have to be very certain !

Statistical testing - confidence levels

when P belongs to population π 
the prospect is barren


when P exceeds π:   $$$$

For example: a mining company measures a property P (for example As content). 

so, what does π look like ? 

population π

mean of π

stdev of π

BAR REN

total prob of π 
= 1 = area 

under curve

P1

At P1:  probability is high that this 
measured value belongs to the 
population π: barren

P2

At P2:  probability is much lower that 
this measured value belongs to the 
population π: $$$$ more likely



Statistical testing - confidence levels

population π

when P belongs to population π 
the prospect is barren


when P exceeds π:   $$$$

domain A

95% of π

domain B

5% of π

mean of π

stdev of π

BAR REN

For example: a mining company measures a property P (for example As content). 

the confidence level specifies the 
domain(s) of π where we reject that P 
belongs to π, i.e. the cutoff level

P

Let’s set alpha = 5%

If P has a value in the green domain: 
we assume that it does not belong to 
the red, barren distribution, but 
comes from a separate distribution 
that describes the ore deposit

However, there is a 5% chance that it is 
still part of the red distribution: type I error

P1 P2

Outside of the

confidence interval

Statistical testing - confidence levels

population π

when P belongs to population π 
the prospect is barren


when P exceeds π:   $$$$

domain A

95% of π

domain B

5% of π

mean of π

stdev of π

BAR REN

For example: a mining company measures a property P (for example As content). 

P

If P has a value in the red domain: we 
assume that it belongs to the red, 
barren distribution and will not drill it.

However, there is a chance that it is 
part of the ore distribution, because 
we don’t know what it’s distribution 
looks like: type II error

B1B2B3
the confidence level specifies the 
domain(s) of π where we reject that P 
belongs to π, i.e. the cutoff level

Let’s set alpha = 5%

Within the

confidence interval

Statistical testing - confidence levels

population π

when P belongs to population π 
the prospect is barren


when P exceeds π:   $$$$

domain A

95% of π

domain B

5% of π

mean of π

stdev of π

BAR REN

For example: a mining company measures a property P (for example As content). 

The cut-off level is controlled by the 
confidence level alpha and varies:

B1B2B3

why?    


at low alpha rarely wrong, but 
you don’t find much. 


at high alpha, will find every-
thing, but are commonly wrong

when mining is doing well: alpha = 80%

when mining is under stress: alpha = 5%

Statistical testing - the steps

Compare the test property against a certain probability distribution
the expected distribution defines the probability of finding a certain observation: 
can find these values in tables, for example the normal and student-t distributions

3.

-5.0 -4.0 -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 5.0

total surface area = 
total probability = 1

±1 stdev = 2/3 of data

±2 stdev = 95% of data

f(x) =            e (-     (     )2)
s  2p
1 1

2
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Statistical testing - testing against the normal dist.

every value or data point is derived from a population

So, for a set of measurements:
all same population

all different population

grouped in populations

composition

each population has a 
mean and stdev

Statistical testing - population probability

within a population there is a prob for occurrence of each value

this probability is known if:
normally distributed

mean is known

variance is known

every random sample has a:

high prob of being close to the mean

low prob of being far removed from 
the mean

A

B

Statistical testing - population probability

outliers are values that have a low probability of occurrence

values beyond 3 stdev: highly unlikely


prob of belonging to population less 
than 0.5%: regarded as outlier


However, possibility is not zero ! 

A

B

Identical for populations A and B, but a given deviation from the mean will be 
less likely to be an outlier in case A where the spread is larger.

Statistical testing - population probability

to use Gaussian probabilities, have to standardize populations

populations A and B are both normal, 
but different in shape:


convert them to standardized form:


Z-score:    Zi = (xi - μ) / σ

A

B

xi - μ
xi - μ
   σ

μ
μ + σμ − σ

0
+σ−σ

0
+1−1



Statistical testing - population probability

Z-scores: standardized normal distribution
can use the probabilities of the Gaussian distribution to determine the 


probability for a given value to occur:

see table 2.2 on page 409 

Given a population with a mean of 12 and a standard deviation of 8

How likely to find a value < 14 ?μ

12

μ

14

μ

How likely to find a value > 14 ?


Z = (14-12)/8 = 0.25

probability of 100-59 = 41%

probability of Z = 0.25:  59%

Statistical testing - population probability

Z-scores: standardized normal distribution
can use the probabilities of the Gaussian distribution to determine the 


probability for a given value to occur:

see table 2.2 on page 409 

Given a population with a mean of 12 and a standard deviation of 8

How likely to find a value that is 
between 4 and 20 ?

μ

12

μ

4 20

μ

Z4 =  (4-12)/8    = -1

Z20 = (20-12)/8 = +1

probability of Z = -1:  15.9%

probability of Z = +1:  84.1%

so prob = 84.1-15.9 = 68.2%

Statistical testing - population probability

can be used as a criterion to classify a data point as an outlier

How likely to find a value > 40?


Z = (40-12)/8  = 3.5

probability: 100 - 99.98 =      

                       0.02%


highly unlikely: outlier


must belong to another 
population: B


problem with B: know 
nothing about it

P

Statistical testing - population probability

So to summarize these observations:

if we can exclude something from population A:

strong statement, exceeds our specified threshold of α 

will be wrong sometimes, but at least we know and can control it


if we cannot exclude something from population A:

there is still a possibility that it belongs to another population (e.g. B), 
but because we know nothing of B, cannot specify the prob of this

weak statement:


type II errors are worse

you know your chances of failure, but not those of success... 



Statistical testing - population probability

what if we know the properties of the other pop as well ?

for the ore sample example:

  population A: μ = 60,  population B: μ = 130


population P: μ = 110, SEA,B = 20 (SE because comparing means)

Zi = (μP - μ) / SE       at α = 0.05:    -1.96 < Z < 1.96

1) hypothesis: P part of A        H0;  μP = μA

Z = 2.5, so it exceeds Z range:  rejected


2) hypothesis: P part of B        H0;  μP = μB

Z = -1.0, so it is within Z range:  accepted

Statistical testing - population probability

what if we know the properties of the other pop as well ?
another example:


  a well-established fossil population has length μ = 14.2 ± 4.7 mm

now a researcher finds a mean of 30 mm from n = 10


can these belong to the same population?

Z = (μnew-μ) / (σ/√n)    at α = 0.05:    -1.96 < Z < 1.96

hypotheses:     H0;  μnew = μ

                         HA;  μnew ≠ μ

Z = (30-14.2)/(4.7/√10) = 10.63 
x

Statistical testing - the t-distribution

rarely know the population mean and stdev, rather sample stats

In the previous examples we presumed to know the mean and stdev of the 
population, but in reality we rarely do: estimate these from a sample

so, the test distribution should have a larger uncertainty and this has to depend 
on the number of samples (degrees of freedom):    the t-distribution

d.f. = 5

d.f. = 15

d.f. = 25

d.f. = ∞curve becomes 
wider and shallower 

as total area = 1

values for the t 
statistic can be 

found in tables for a 
given confidence 

level and no. of d.f.


e.g. 2.4 on page 411
as d.f. —> ∞


t —> Gaussian

The curse of low sample numbers

The t-distribution elegantly shows the effect of small sample numbers on 
the probability of finding extreme values:

the probability of finding a certain value depends on the number of samples: less 
samples means (ironically) a higher probability

d.f. = 5

d.f. = 15

d.f. = 25

d.f. = ∞

average number of cancer 
cases in Canada per 1000

less than average more than average

values for the t statistic 
can be found in tables 
for a given confidence 

level and no. of d.f.


e.g. 2.4 on page 411



Statistical testing - t-distribution testing

testing against the t-distribution is identical to that of Z-scores

t = (x-μ) / (s/√n)         using the means and SE, so    

                                  independent of the type of 

                                  distribution !

_

Normally we do not test individual values against the t-distribution, but 
rather the mean derived from a sample against the mean of the population 
we think these values come from


has the added advantage that we can ignore distribution (multi-modality......)

Can use it for two very useful properties:


- the confidence interval for a value or property by extracting μ

- required sample size for specified confidence by extracting n

Statistical testing - t-distribution testing

Commonly, a company needs to guarantee certain specifications for a product. For 
example, that the concentration of the ore element is at a certain level, or the 
concentration of a contaminant below a certain level. Missing such targets can be 
very costly. So how do you decide what is a good, as in achievable, level ?

suppose x from μ1: prob high

  from μ2: prob lower

  from μ3: prob lower

  from μ4: prob low

_
mean

μ1 μ2 μ3 μ4

at some value of μ, will exceed the 
confidence level: too unlikely to 
come from a population with this 
mean: this is the upper μ

similarly, will reach a lower μ when 
working down from the mean

μ5

The confidence interval on the mean represent the range from this 
lower to the upper population mean for a given confidence level.

Statistical testing - t-distribution testing

the confidence interval for a mean at a given confidence level:

mean μ+μ-

2.5% 2.5%

mean can belong to populations for 
which the probability of occurrence 
of this mean is more than 0.5α 

formulae:

Statistical testing - t-distribution testing example 1

the confidence interval for the concentration of phosphorus in iron ore

Say we are required to supply iron ore with a bulk phosphorus content of less 
than 250 ppm, or the company has to pay a fine. The mean P content that you 
have determined is 215 ± 30.8 ppm based on 8 samples. 


the specifics:     our mean: 215 ± 30.8 ppm from n = 8

  the limit: 250 ppm

  desired confidence: 95%

189 < mean < 241

What is the 95% confidence interval on the bulk concentration?

          d.f. = n - 1

      α = 0.05

      tα;df = 2.365

215

215

30.8

30.8 ok



Statistical testing - significance of r

So, let’s now return to the correlation coefficient:

t = r           n - 2
1 - r2

with d.f. = n - 2   and t α;d.f.

Our hypotheses:      H0:   r = 0,  if true, no significant correlation: domain A

                                 Ha    r ≠ 0,   cannot reject the absence of correlation: B

domain A

95% of pop

domain B-

2.5% of pop

domain B+

2.5% of pop

r = 0

α = 0.05 this is a t-distribution 
for a given α and d.f. when r plots in domain B: 


prob of it belonging to the 
population r = 0 is lower 
than our threshold α:


reject r = 0 and therefore 
conclude that the variables 
are correlated

Statistical testing - significance of r

Testing the significance of the correlation coefficient:

t = r           n - 2
1 - r2

with d.f. = n - 2   and t α;d.f.

Our hypotheses:      H0:   r = 0,  if true, no significant correlation: domain A

                                 Ha    r ≠ 0,   cannot reject the absence of correlation: B

domain A

95% of pop

domain B

5% of pop

r = 0

this is the t-distribution 
for a given α and d.f. when r plots in domain B: 


prob of it belonging to the 
population r = 0 is lower 
than our threshold α:


reject r = 0 and therefore 
conclude that the variables 
are correlated

r ≠ 0

α = 0.05

Statistical testing - significance of r

t = r           n - 2
1 - r2

with d.f. = n - 2   and t α;d.f.

Our hypotheses:      H0:   r = 0,  if true, no significant correlation

                                 Ha    r ≠ 0,   cannot reject the absence of correlation

Let’s say:   n = 25, so d.f. = 23

   α = 0.05 or 0.025

    r    = -0.34

tcalc = -1.73

t 0.05;23 = 1.71 = -1.71

t 0.025;23 = 2.07 = -2.07


tcalc exceeds t 0.05;23  ->  reject H0

tcalc doesn’t exceeds t 0.025;23  ->   

         cannot reject H0

What values of r are meaningful for a given confidence level

Statistical testing - significance of r

The effect of degrees of freedom (n) on the significance:

e.g. a data set like this:

r = 0.42
at n = 5;   t = 0.80

is this correlation significant at α 
= 0.05 and the following n ?

t0.05;3 = 2.353

at n = 10;   t = 1.31
t0.05;8 = 1.860

at n = 25;   t = 2.22

t0.05;23 = 1.717

x
x
v


