Data analysis and Geostatistics - lecture X

Discriminant function analysis and clustering

Multi-variate techniques

Have now finished data description and statistical testing will now move to more advanced (multi-variate) techniques:

Regression analysis; quantitative description of trends in data - allows for interpolation and extrapolation beyond the input data

Discriminant function analysis; a means to differentiate groups in a data set - used to differentiate and classify

Principal component and factor analysis; determine directions in a data set to reduce the number of variables and/or look for processes in the data

Cluster analysis; group data into homogenous clusters - used to differentiate and to split up multi-modal data sets for use in other stat techniques

Spatial geostatistics; techniques for mining spatially distributed data

Multi-variate techniques: regression

Key aspects of regression analysis

It generates a model of your data; quantitative description of trends in data - allows for interpolation and extrapolation beyond the input data

Strict requirements; normality and no trends or bias in the residuals, no overly influential data points

Significant, meaningful and predictive; need to test that the coefficients and model are significant ($r \neq 0$, $b_i \neq 0$), that the equation chosen is the most appropriate and that the model is predictive (no overfitting)

Multi-variate techniques

Have now finished data description and statistical testing

will now move to more advanced (multi-variate) techniques:

Regression analysis; quantitative description of trends in data - allows for interpolation and extrapolation beyond the input data

Discriminant function analysis; a means to differentiate groups in a data set - used to differentiate and classify

Principal component and factor analysis; determine directions in a data set to reduce the number of variables and/or look for processes in the data

Cluster analysis; group data into homogenous clusters - used to differentiate and to split up multi-modal data sets for use in other stat techniques

Spatial geostatistics; techniques for mining spatially distributed data

Separation and classification of data

Two main statistical techniques used to separate and classify:

Discriminant function analysis - DFA

Cluster analysis

Goals of these techniques:

to separate

majority of statistical techniques cannot be applied to multi-modal data sets: have to split them into homogenous groups.

to classify

to what group should a sample be assigned. Examples: soil classification, rock classification, etc. Use the combination of a variety of characteristics to link unknowns to specific (pre-defined) groups.

Separation and classification of data

The two techniques have a somewhat different focus:

Discriminant function analysis: find a function/vector that best separates the groups in your data set

Cluster analysis: group samples into clusters based on their similarity

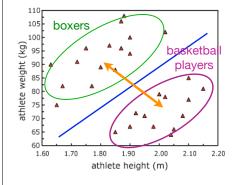
both techniques allow you to quantify the degree of membership to each cluster

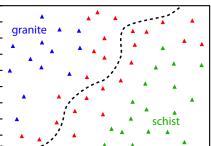
Discriminant function analysis

Examples of discriminant function analysis

2D case: difference between athletes

tics that are then plotted in space

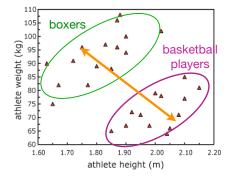




Discriminant function analysis

How do we determine a discriminant function ?

Need a training set that defines the groups: data with known grouping e.g. a characteristic group of boxers and basketball players



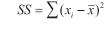
Next: search within this training set for the vector that leads to optimal separation

This function can then be used to classify unknowns

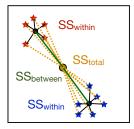
How do we determine a discriminant function ?

The vector of maximum separation can be obtained by sum of squares methodology

so let's have another look at the sum of squares:



² the cumulative deviation from a mean



SS_{within}: the cumulative deviation of the data from their respective group's mean - within variance

SS_{total}: the cumulative deviation of the data from the overall data mean - total variance

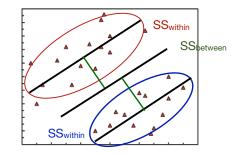
 $SS_{between}$: the cumulative deviation of the group means from the overall mean - between variance

Discriminant function analysis

a good DF is a function where $SS_{between} >> SS_{within}$

Find the best DF by optimizing the function for maximum SS_{between} / SS_{within} $DF = b_0 + b_1X_1 + b_2X_2 + b_3X_3 + b_4X_4 +$

fitting of the b - coefficients is generally done by iteration and is thus best performed by a computer program.



when data strongly correlated: the mean not the best descriptor when calculating the cum. dev.

Instead: use the cumulative deviation from the covariance trend: the mean vector

to work: correlations within groups have to be similar between groups

Discriminant function analysis

Not all variables in the DF are necessarily significant

Have to check if each variable adds something to the separating power of the equation - if not: remove the variable from the DF

 $\mathsf{DF} = \mathsf{b}_0 + \mathsf{b}_1 \mathsf{X}_1 + \mathsf{b}_2 \mathsf{X}_2 + \mathsf{b}_3 \mathsf{X}_3 + \mathsf{b}_4 \mathsf{X}_4 + \dots$

How to check for significance:

include everything and test the significance using F and tolerance tests, then rerun with subset of significant variables

F-tests: does my fit significantly improve by including this variable ? tolerance: is this var's separation already covered by another var ?

include variables stepwise and determine how the fit (correct assignment of training set) improves as you add variables

Both are affected by the order of inclusion/exclusion of variables

Discriminant function analysis

requirements for discriminant function analysis:

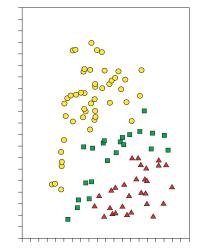
data must be derived from multi-variate normal distributions

covariance matrices should be same for each group (the mean vectors should be parallel)

if not:

can still apply discriminant function analysis, but the resulting functions will not be linear, and significance and goodness-of-fit are much more difficult to assess

DFA to determine the location of a geological boundary



the contact between a granite and a schist:

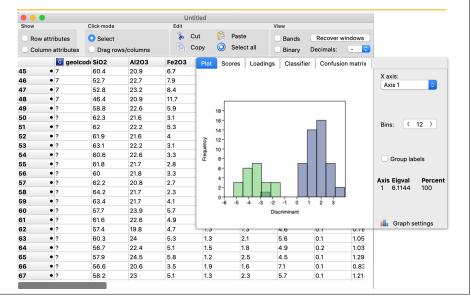
two sets for training and a set of unknowns

26 major and trace elements have been determined on river sediments in this area

river sediment compositions are a mixture of the drainage area, so boundaries are diffuse

use these to derive a discriminating function with which to assign the unknowns and thereby pinpoint the location of the boundary

Discriminant function analysis with PAST



Discriminant function analysis with PAST

Plot	Scores	Loadings	Plot Se	cores Loadings	Plot	Scores	Loadi	•	Classifier	Confusion matrix	
	Axis '	1				7		10	Total		Rows: Given groups
2	1.734	6			7	46	1		47		Columns: Predicted grps
3	1.732	5			10	0		22	22		Columns. Fredicted grps
4	-2.25	07		Axis 1	Total	46	2	23	69		
5	0.585	95	SiO2	0.074055							Jackknifed
6	0.901	36	AI2O3	0.17649							
7	1.35		Fe2O3	1.0443							% correctly classified:
8	1.130	4	CaO	-0.57169							98.55
9	2.579	2	MgO	1.3128							
10	1.367	8	К2О	-0.027256							
11	2.333	3	MnO	-5.3349							
12	2.520	6	TiO2	-0.0263							
13	1.371	3	P2O5	0.00055494							
14	1.334	3	Li	0.0027225							
15	2.157	2	Be	0.0028415							
16	1.658	9	В	-0.0090147							
17	1.14		v	0.0059463							
			Cr	-0.071659							
			Co	0.061826							
			Ni	0.03194							
			Cu	-0.033276							
			Zn	-8.8537E-05							
			As	-0.0052967							
			Sr	0.017747							
			Y	-0.15769							
			Nb	-0.033292							
			Mo	0 30053							

Discriminant function analysis with PAST

Plot Scores	Loadings Classifi	er Confusion matrix	
Point	Given group	Classification	Jackknifed
46	7	7	7
47	7	7	7
48	7	7	7
49	?	10	
50	?	10	
51	?	10	
52	?	10	
53	?	10	
54	?	10	
55	?	10	
56	?	10	
57	?	10	
58	?	10	
59	?	10	
60	?	10	
61	?	10	
62	?	10	
63	?	7	
64	?	10	
65	?	10	

Discriminant function analysis with NCSS: check the tutorial

Variable Influence	Section						
	Removed	Removed	Removed	Alone	Alone	Alone	R-Squared
Variable	Lambda	F-Value	F-Prob	Lambda	F-Value	F-Prob	Other X's
SiO2	0.929825	3.40	0.071940	0.532149	65.06	0.000000	0.897321
AI203	0.957967	1.97	0.166838	0.918458	6.57	0.012403	0.841157
Fe2O3	0.997191	0.13	0.723460	0.469680	83.55	0.000000	0.977096
CaO	0.866789	6.92	0.011653	0.996300	0.27	0.601687	0.969604
MgO	0.913752	4.25	0.045116	0.959101	3.16	0.079778	0.960142
K20	0.764824	13.84	0.000551	0.761159	23.22	0.000007	0.874850
MnO	0.996012	0.18	0.673246	0.912984	7.05	0.009686	0.843421
TiO2	0.812242	10.40	0.002347	0.615201	46.29	0.000000	0.959324
P205	0.892082	5.44	0.024167	0.708030	30.52	0.000000	0.785085
Li	0.919225	3.95	0.052854	0.227281	251.59	0.000000	0.946061
Be	0.966909	1.54	0.221043	0.241559	232.34	0.000000	0.962685
В	0.972051	1.29	0.261353	0.389654	115.91	0.000000	0.888401
V	0.958531	1.95	0.169777	0.533296	64.76	0.000000	0.968710
Cr	0.910433	4.43	0.040994	0.985079	1.12	0.293171	0.974521
Co	0.973536	1.22	0.274603	0.630067	43.45	0.000000	0.960442
Ni	0.975333	1.14	0.291743	0.781352	20.71	0.000021	0.975646
Cu	0.960009	1.87	0.177750	0.412601	105.35	0.000000	0.899286
Zn	0.996957	0.14	0.712653	0.940833	4.65	0.034234	0.826045
As	0.978912	0.97	0.330094	0.938756	4.83	0.031136	0.761502
Sr	0.975353	1.14	0.291945	0.991157	0.66	0.419100	0.934216
Y	0.996994	0.14	0.714331	0.928123	5.73	0.019204	0.915249
Nb	0.830807	9.16	0.004074	0.999987	0.00	0.975186	0.855943
Mo	0.997030	0.13	0.715968	0.625719	44.26	0.000000	0.781241
Sn	0.933963	3.18	0.081209	0.199167	297.55	0.000000	0.960175
Sb	0.986739	0.60	0.440835	0.956418	3.37	0.070328	0.633268
Ba	0.997823	0.10	0.755466	0.565783	56.79	0.000000	0.739602
La	0.970122	1.39	0.245282	0.961321	2.98	0.088608	0.988756
Ce	0.986945	0.60	0.444426	0.965349	2.66	0.107397	0.989428
Pb	0.986018	0.64	0.428595	0.612586	46.80	0.000000	0.738825
Zr	0.988784	0.51	0.478639	0.769770	22.13	0.000012	0.818772

tutorial tells you what all input and output means + requirements

check for

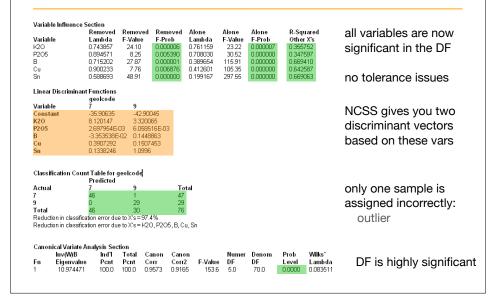
significance of the variables with F-tests: removed F-prob

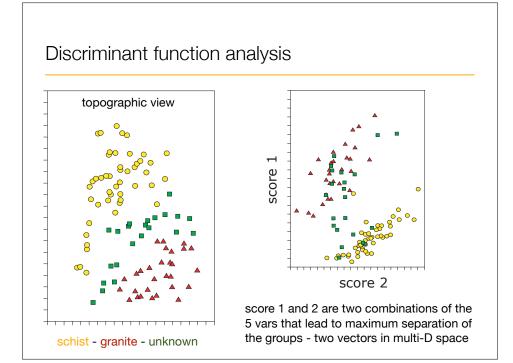
> should be < α
> alone F-prob should be < α

check for tolerance issues with R²: if 1-R² is low, the var

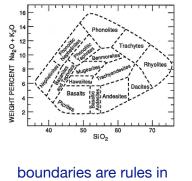
doesn't add diff

Discriminant function analysis

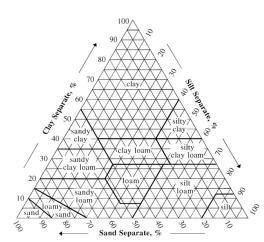


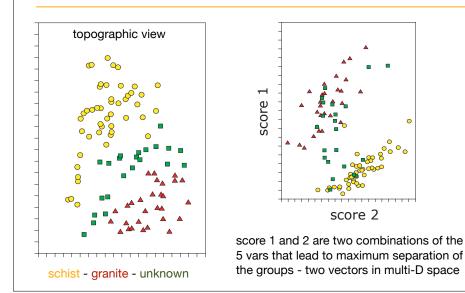


Why separating vectors instead of boundaries ?



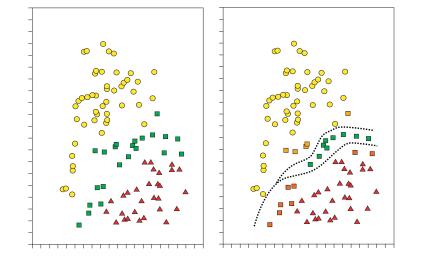
the space defined by the separating vectors





Discriminant function analysis

Use the vectors to assign the unknowns - not all fit with these groups



Other discriminating approaches

Given how important classification is, there are many more techniques that have been devised for this;

QDA - quadratic discriminant function

- PCA-LDA discriminant analysis on transformed coordinate axes (principal components)
 PLS-DA - discriminant analysis on transformed coordinate axes with axis directions optimized for discrimination
- mapping (hypercube logic, random forest, etc) mapping "routes" in multivariate space to the desired outcome

Cluster analysis

Group samples into clusters based on similarity

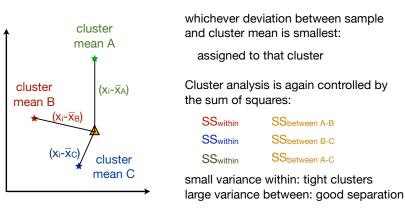
Cluster analysis requires substantial user input (selection of number of clusters, clustering routine, similarity criteria, etc)

and results can therefore be ambiguous:

always give detailed information on how your cluster analysis was performed

Cluster analysis

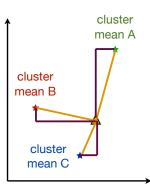
Group samples into clusters based on similarity



increasing the number of clusters will decrease the within variance, until all samples are their own cluster. That result is however meaningless....

Cluster analysis - sample assignment criteria

range of techniques that can be used to determine similarity



Wide range of techniques - see book for details

• Euclidian distance - r or r²

• city block of Manhattan distance - this is useful when the two variables are separate characteristics (fossil length and width, the diagonal is not of interest)

• correlation similarity - sample with the same correlation are grouped together: deals with dilution effects

 association values - especially useful when you have only presence/absence data
 specialized

Cluster analysis - two types

Two varieties of clustering: hierarchical and partitioning methods

hierarchical techniques: represent similarity in a tree or dendrogram

the method:

- 1. all samples are a separate cluster
- 2. link the two most similar samples
- link two other samples to form a new cluster or add a third sample to the first cluster depending on similarities
- 4. continue until only one cluster remains

in this technique all intermediate steps and cluster associations are immediately available - depends on the user to select an appropriate "pruning" level in the tree

there are many ways to link samples and these do result in different trees (see book for details)

Hierarchical cluster analysis

An example of hierarchical clustering:

the composition of a number of lava samples from Kawah Ijen volcano:

sample degree of dissimilarity	dissimilarity based upon
KV01	nearest neighbour criterium
KV20	
KV41	the resulting tree can be "pruned" at any level:
KV08	up to the user to select
KV10 KV12	should test if difference
KV14	between groups is significant (which test?)
KV21	basalt dacite
clusters 11 9 4	2 andesite duplicate

Clustering - partitioning techniques

Two varieties of clustering: hierarchical and partitioning methods

partitioning techniques: assigns samples to a known number of clusters based upon similarity criteria

the method:

1. samples are assigned to the cluster they are most similar to in multi-dimensional space

2. each assignment results in a shift in the characteristics of the cluster centre (means + variance or only variance)

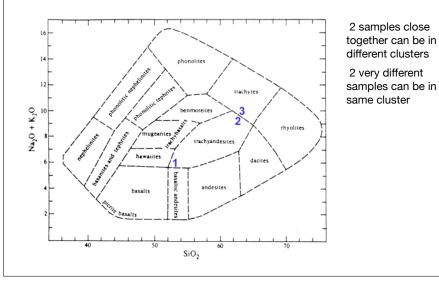
3. samples are re-assigned where necessary and this routine is iterated until the system stabilizes

There are two main approaches:

clustering with specified cluster means (i.e. known groups) and clustering where the means are obtained during clustering

both have their pros and cons:

Partitioning techniques advantages disadvantages you always get the same boundaries commonly based answer during classification on consensus (artificial) specified/ groups can relate to real ► 2 samples close together can fixed dividing phenomena be in different clusters unknowns are (generally) ► 2 very different samples can easily classified be in same cluster data groups not split up over instability issues: more data different clusters will result in shift in cluster means and sample assignment boundaries always in regions assigned/ sought of low data density ▹ no fixed boundaries so unsuitable for classification easy to apply to data sets schemes with many variables

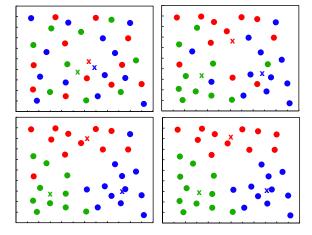


Partitioning techniques

advantages	disadvantages
 you always get the same	 boundaries commonly based
answer during classification	on consensus (artificial)
 groups can relate to real	2 samples close together can
dividing phenomena	be in different clusters
▶ unknowns are (generally)	► 2 very different samples can
easily classified	be in same cluster
 data groups not split up over	 instability issues: more data
different clusters	will result in shift in cluster
boundaries always in regions of low data density	means and sample assignment
 easy to apply to data sets with many variables 	 no fixed boundaries so unsuitable for classification schemes
	 you always get the same answer during classification groups can relate to real dividing phenomena unknowns are (generally) easily classified data groups not split up over different clusters boundaries always in regions of low data density easy to apply to data sets

Cluster means assigned during clustering:

when cluster means are specified: use minimum distance to mean to assign if not: randomly assign each sample to a cluster and iterate to stable solution



both cluster means and cluster assignment change during the iteration

process stops when samples no longer change their assignment

center

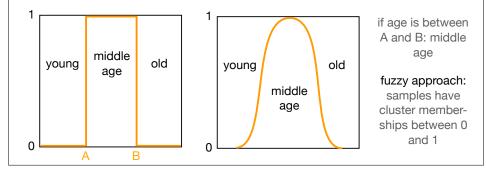
Cluster analysis - method of assignment

Samples are normally assigned to a cluster in a "hard" way:

samples are unambiguously attributed to a specific cluster - 0 or 1 assignment

However, mother nature is rarely so black and white....

"middle age" cluster depends very much on percon/country/continent

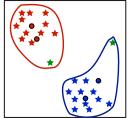


Fuzzy clustering

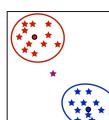
fuzzy clustering has a number of distinct benefits:

can deal with intermediate cases - not force-assigned samples have share multiple clusters - extra information: (0.7 young + 0.3 middle age versus 0.5 young + 0.5 middle age) ensures that single samples do not overly control individual clusters can have a separate outlier assignment

most flexible and powerful: fuzzy clustering with seeking of cluster means



hard clustering strained assignment due to outlier and intermediate value



fuzzy clustering outlier not a

problem and intermediate

shown

Clustering in NCSS - the eating habits of Europe

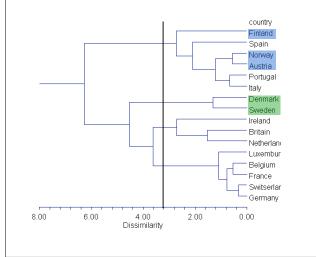
can we distinguish the Europeans by their eating habits?

the data (missing value = -999):

country	Coffee	Nescaf T	ea	Sweete	Biscuit: P	ack s1	in sou	Frozen	Frozen	Fresh	Tin fru J	Jam	Garlic	Butter	Marger (Olive (Yoghu
Germany	90	49	88	19	57	51	- 19	27	21	81	44	71	22	91	85	74	30
Italy	82	10	60	2	55	41	3	4	2	67	9	46	80	66	24	94	5
France	88	42	63	4	76	53	11	11	5	87	40	45	88	94	47	36	57
Netherlands	96	62	98	32	62	67	43	14	14	83	61	81	15	31	97	13	53
Belgium	94	38	48	11	74	37	25	13	12	76	42	57	29	84	80	83	20
Luxemburg	97	61	86	28	79	73	12	26	23	85	83	20	91	94	94	84	31
Britain	27	86	99	22	91	55	76	20	24	76	89	91	11	95	94	57	11
Portugal	72	26	- 77	2	22	34	1	20	3	22	8	16	89	65	78	92	6
Austria	55	31	61	15	29	33	1	15	11	49	14	41	51	51	72	28	13
Switserland	73	72	85	25	31	69	10	19	15	79	46	61	64	82	48	61	48
Sweden	97	13	93	31	-999	43	43	54	45	56	53	75	9	68	32	48	2
Denmark	96	17	92	35	66	32	17	51	42	81	50	64	11	92	91	30	11
Norway	92	17	83	13	62	51	4	30	15	61	34	51	11	63	94	28	2
Finland	98	12	84	20	64	27	10	18	12	50	22	37	15	96	51	17	-999
Spain	70	40	40	-999	62	43	2	23	7	59	30	38	86	44	25	91	16
Ireland	13	52	99	11	80	75	18	5	3	57	46	89	5	97	-999	31	3
	Real coffee	Nescafe	Tea	Sweetener	Biscuits	Pack. soup	Tinned soup	Frozen fish	Frozen veg.	Apples	Tinned fruit	Jam	Garlic	Butter	Margerine	Olive oil	Yoghurt

Clustering in NCSS - the eating habits of Europe

hierarchical clustering of this data set: clear clustering



lots of options available:

use parametric and nonparametric data and even mix these (length + color)

variety of linkage types: nearest neighbour, furthest neighbour, Ward's method

distance: Euclidian or Manhattan city block

see the NCSS hierarchical clustering tutorial for more information

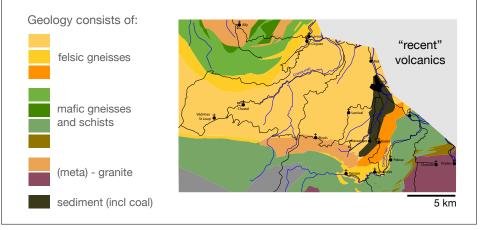
Clustering in NCSS - the eating habits of Europe

hard and fuzzy clustering of this data set:

	K-means - hard	fuzzy-prob 1	fuzzy-prob 2	fuzzy-prob 3	fuzzy-prob 4
Germany	2	0.04	0.02	0.83	0.11
Italy	3	0.01	0.93	0.04	0.02
France	2	0.05	0.12	0.77	0.06
Netherlands	2	0.23	0.07	0.53	0.16
Belgium	2	0.08	0.25	0.56	0.11
Luxembourg	2	0.09	0.06	0.75	0.1
Britain	4	0.92	0.01	0.04	0.03
Portugal	3	0.02	0.92	0.04	0.03
Austria	3	0.03	0.87	0.06	0.05
Switzerland	2	0.05	0.05	0.86	0.05
Sweden	1	0.05	0.04	0.08	0.82
Denmark	1	0.03	0.02	0.07	0.88
Norway	1	0.03	0.07	0.1	0.8
Finland	1	0.06	0.22	0.16	0.57
Spain	3	0.02	0.83	0.11	0.04
Ireland	4	0.88	0.04	0.06	0.03

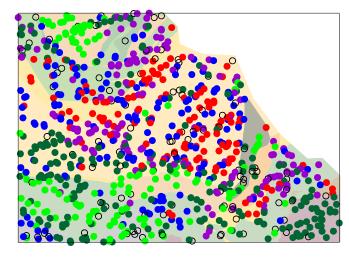
Plotting clusters on maps - Massif Central dataset

Will look at an example from the Massif Central in France. A dataset of the chemical composition of stream sediments collected in an area with a diverse geology and old, now abandoned, mining for Sb, As, Pb, Au, Ba & F



Clustering - groups in Massif Central dataset

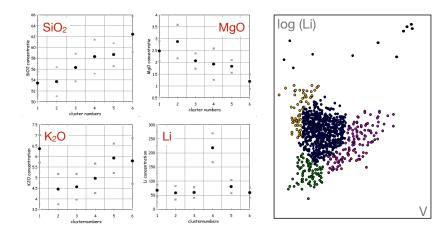
The dataset is best described when split up into six clusters



clear link to the bedrock geology, but not 1 to 1

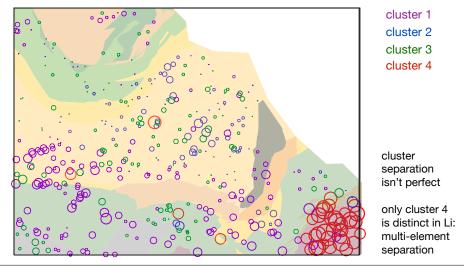
Clustering - properties per cluster

when the data have been clustered: can look at the characteristics of each cluster (mean + stdev) and correlations within this



Clustering - groups in Massif Central dataset

Can plot clusters individually to look at spatial distribution and contents



Clustering - number of clusters

the main difficulty in cluster analysis is choosing the no. of clusters

NCSS, PAST and other clustering packages will calculate assignments for a cluster number range

the residual variance will decrease with every additional cluster so this is not a good indicator of optimal no. of clusters

instead:

choose no. of clusters where variance no longer strongly decreases

use the averaged silhouette value: comparison between a value's dissimilarity with its cluster and the dissimilarity with its nearest neighbour: ranges from 1 to -1: > 0.75: good model < 0.25: poor model

Use the fuzziness of the model (0; completely fuzzy to 1; hard) Fc(U) and Dc(U) parameters: max Fc(U) + min Dc(U) = best model

DFA and cluster analysis summarized

why:

need data to be in homogenous groups group and classify as a data analysis tool

how:

discriminant function analysis derive separating vectors from training set

cluster analysis

fixed/specified cluster means/medians or obtained in clustering hierarchical, hard or fuzzy

requires:

lots of normally distributed variables