Data analysis and Geostatistics /\Q

Short Course on the use of statistical techniques
~—
in the geosciences sS4

Vincent van Hinsberg « McGill University

Geotop Short Course in Data Analysis and Geostatistics
Vector methods, PCA, FA and PLS

A few words of caution....

Eigenvector and clustering methods are extremely powerful aids in understanding
your data, and the underlying processes that control the variability in your study

However;

“Principal component analysis belongs to that category of techniques, including
cluster analysis, in which appropriateness is judged more by performance and utility

than by theoretical considerations”
Davis, 34 ed., 2002

And;
Eigenvector methods require there to be multidimensional correlations in the data set
with meaningful causation —> if these are absent, they are not going to magically

appear, and eigenvector methods are useless.

Also, if they are present in 2-D, there is no added value in multi-D —> you look for
hidden directions in your data in eigenvector methods

Eigenvector methods

Two main techniques: principle component and factor analysis
both techniques perform a transformation of the data to allow for easier
interpretation through:

- reduction of variables
- suggestion of underlying processes
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Eigenvector methods

System can be transformed to its principle components
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The data have been re-cast into a new coordinate system where the axes are
the principal processes operating on your data + noise

majority of the variance in this system resides in PC-1 and PC-2 can be interpreted

as just the scatter/noise in the data:

dimensionality of the system reduced from 2-D to 1-D

without losing any information !

Eigenvector methods - PCA and FA

General notes on Principle Component Analysis and Factor Analysis

* Principle components are the principle non-correlated directions in your data
set (maximized variation along, minimized variation perpendicular to PC)

* Nowadays datasets with 50 to 100 variables are not uncommon. A reduction
to a much smaller number of unrelated variables (the Factors) makes it much
easier to mine such a dataset

* In PCA all variance is redistributed to new PCs, resulting in the same number
of PCs as original variables.

* In FA, only those PCs that are informative are retained and the remainder is
discarded as noise. The PCs can also be rotated to simplify interpretation.

« Strictly speaking PCA is a mathematical transformation of your data that
retains all information, whereas FA is an interpretive model of your data.

* In reality, most software package call both PCA

Principle component analysis - PCA

Especially useful in multi-D space

have already seen an example of this
approach when looking at DFA:

5-D replaced by 2 vectors that allow
you to recognize clustering in the data:

this was not obvious in original data

However;

in this case the data are correlated in
this 2-D vector space, whereas PCs
are not allowed to be correlated

Principle components are the principle
non-correlated directions in your data
set
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Principle component analysis - PCA

So what do we do in principle component analysis ?

look in the data for vectors that have maximum variance along them
(i.e. a strong correlation/covariance)

as all variables that display the same correlation/covariance are grouped
together, the trend they describe cannot be shared with any other PC

PC-1 = vector that explains most of the variance
the strongest direction in your data

PC-2 = vector that next explains most of the residual variance
PC-3 = vector that next explains most of the residual variance
etc

so PC-1 explains more variance than any single original variable and
therefore, PC-n explains less variance than a single variable (noise)




Principle component analysis - PCA Principle component analysis - PCA

So what do these principle components look like ? Another way to explain PCA: psychological questionnaires

PC: PC1=a11X1 + a12Xz + @13Xs + @14Xq + @15Xs + ... Xi = original vars ' A psychologist want to know your intelligence,
PC2 = @21X1 + @22Xo + @23X3 + @24X4 + a25X5 + ... aj = coefficients that optimist whether you are extroverted, a pessimist, etc.
PCs = az1X1 + az2Xo + a33Xs + a3aXs + azsXs + ... relate the original intelligence

PCa = @41X1 + @42X2 + @43X3 + a44X4 + a45Xs + ... vars to the PCs Have to work this out from indirect questions

that correlate with the variable that you are
interested in (e.g. intelligence, optimism, etc)

Note that to satisfy multi-non-colinearity some of the a-coefficients have to be 0

Many questions lead to a small number of

. . . PC4 a1 aie a13 aa A1s i‘ ultimate variables
in matrix notation: ch _ as{ Q2o Ap3 A24 A5 ] Xi
PC=AX PCs as1 A3z as3 A34 ass X4 Xi
PC.4 Aa1 Q42 Q43 Ass As5 Xs F|?CC31 :11 :12 213 :14 :15 Xo matrix A tells you how
PCi - a: aiz aiz azi aiz - X3 to score the answers
X
PC4 a1 @42 43 Q44 As5 X4
5
Principle component analysis - PCA Principle component analysis - PCA
The transformation matrix A is what you want to obtain Link with correlation makes sense (I hope):
the matrix that translates the original variables to line up with the all variables that are correlated define one trend in the data so they should
principle directions in the data: the PCs be combined in one PC, and this PC and its component variables should

have an insignificant correlation with all remaining variables and PCs
so, it redistributes the variance of the original variables over the PCs,
maximizing it for PC1:  Var(PC1) = max
it ensures that the PCs are uncorrelated:  Cov(PCi-PCi;1) =0

e.g. 5 variables with the following correlation matrix:

1 2 3 4 5 strong weak
Note that we are only translating the data to a new coordination system: no info loss ! 1 - |os5/014l023 078 correlations: correlations:
2 - - [0.2110.19]0.95 1&2 1&3
The matrix A is obtained from the covariance or the correlation matrix
3 - - - 09 | 025 1&5 1&4
- 7 R R R s 285 283
when all variables are when mixing variables 5 _ _ _ - - 284
equivalent (e.g. all (e.g. ppm + wt% + pH) 38&4 5&3
wt%, all ppm, etc) 5&4

S0, this dat set has two PCs, with low correlation between them




Principle component analysis - PCA

Strong reduction in dimensionality: 5D to 2D

this allows for much easier data visualization and (hopefully) interpretation
+

it may point to two underlying processes, affecting a different set of vars

a good way to represent this
is to plot it in variable space

Now you get two clusters of
variables and these are your
PCs

So in a way, PCA is cluster
analysis on your variables

6 8 10 12 14 16 18
sample 2

Principle component analysis - PCA

So how do we obtain the transformation matrix from cor/cov ?

have to determine the eigenvectors in the correlation or covariance matrix
these are the weights that relate the original variables to the PC vectors

and scale these so that the variance of a PC equals 1

PC = U L-05 X in matrix notation input:
— / \ original vars
©
9 c
w2 operator:
E T this is the PC vector these are the original eigenvector matrix
:'é g i.e. the new variables variables, i.e. the input scaled by
© o= . . eigenvalues
g2 the eigenvector the diagonal eigen- 9
g g matrix of the value matrix of the output:
o cor/cov matrix cor/cov matrix, i.e. PC vector

the scale factor

Principle component analysis - PCA

An example for thermal spring data from the Rockies:

. the coefficients are
S Al Cu Zn PH T the factor loading:

PC-1 0.6 -0.2 0.1 0.3 -0.4 0.9

pc2 | 03 | 07 | 02 | -01 | 06 | -01 the correlation
between the original

PC-3 0.1 -0.1 0.9 0.8 -0.7 0.4 variables and the PCs

PC-4 -0.2 0.2 -0.3 0.1 -0.4 -0.2 .
they display a clear
grouping of variables

PC-1: Siand T - as T increases the solubility increases

PC-2: Al and pH - unclear, clay effect? speciation?

PC-3: Ca, Zn, -pH and =T - low pH + high conc. base metals: sulfides
PC-4: no clear associations - residual noise ?

You get as many PCs as there are original variables, but not all will be meaningful.

Principle component analysis - PCA

The variance in the original variables is redistributed;

PC-1 will have a variance greater than a single original variable (it explains more
variance in the data set than a single original variable)

so, subsequent PCs will eventually explain less variance than a single original var
such PCs can generally be ignored thereby reducing the dimensionality

but where should we put the boundary?

the eigenvalues show you how much variance a PC explains compared to the
original variables and this value can therefore be used to define a cut-off:

- all eigenvalues less than 1 are insignificant (generally too restrictive)

- use a scree plot (PC-number versus eigenvalue) - where there is a kink in this
plot: boundary - use all PCs up to this point and one beyond

- maximum likelihood method - the goodness-of-fit of the factor model is iteratively
tested using the X2 test and additional factors are calculated from the residual
covariance/correlation matrix only if it fails the X2 test




Restricting the number of PCs: FA

The variance in the original variables is redistributed;

PC-1 will have a variance greater than a single original variable (it explains more
variance in the data set than a single original variable)

so, subsequent PCs will eventually explain less variance than a single original var

such PCs can generally be ignored thereby reducing the dimensionality

The cut-off can be determined
in a scree-plot

eigenvalue

123 45 6 7 8 910111213 14151617

PC number

Principle component analysis - PCA

To facilitate interpretation the resulting PCs are commonly
rotated in multi-dimensional space

The most popular technique is Varimax rotation:
“rotation to maximize the variance of the squared loadings within each column of the loadings matrix”

this rotation results in the correlations with the original variables to be either
large or small, so it enhances the contrast, producing PCs that are highly
correlated with a few original variables and very weakly with the rest:

much easier to interpret, because it is immediately clear which variables are
important and that in turn can directly point to the underlying process

Varimax rotation

A Factor Analysis example using PAST

The Sn-W mineralized granite of Regoufe (Portugal)
6 km?
55 samples

After cleaning
15 elements

All elements log-transformed




A Factor Analysis example

The Sn-W mineralized granite of Regoufe (Portugal)

A Factor Analysis example - PAST

The Sn-W mineralized granite of Regoufe (Portugal)

The correlation matrix

NR Xco Yco F ZR SR CE BA B 1} w NB RB u TH TA AS cs SN
1w 3 320 29 53 146 246 S0 758 18 3% 715 5 16 1428 26 s = = - - - a ” = - = i = =
2w 4 302 43 34 281 %40 60 785 155 31 64 4 48 10% 54 B F 050221 030731 054151 042093 028885  0.19875 015289 046813 058401  0.012455 -0.53583  0.50934
3 & % 380 43 33 288 1087 280 647 1443 31 69 7 52 151 w64 68 54 zR -0.50221 0055172 095109  0.86482  0.4027 0.13749  |-0.056488 071756 0786795 0012834 095715  -0.76939
b k3 - o |o| o | ma | o8 | @ || o5 |3 e lal| oo | o = 5 | @ SR 030731 0.055172 0062507 |0.066011  -0.082219 -0.076446 -0.18118  0.041973 00027489 0014244  -0.0051581 0.10501
L o - SIS U R [ — g — T p— i — ons . 5 | o ce 054151 095100 0.062507 086814 035716 003861  -0.087515 072012 077750 007226 096249  -0.77617
BA 04203 086482  0.066011  0.86814 042212 0056067 |0.079535 076312 075126  0.10691 088669  -0.7485
0 31 222008 2 N2 7,2 5 0 GO 07 17 70 71 RO 2.5 17.85) 805 L B -0.28885  0.4027 0082219 035716 042212 011569  -0.10035  -0.57752  -0.55081 -0.20643  0.40807  -0.53463
7 s 134 400 19 2 162 180 70 42 1671 43 89 20 175 199 3923 470 u 019875 013749  -0.076446 0.03861  0.056067  0.11569 0.059215  0.076383  0.2815 063521 0081594 0.10293
8 65 127 80 19 15 83 320 so 43 1675 53 782 21 143 2005 10450 45 64 w 015280  -0.056488 -0.18118  -0.037515 0079535  -0.10935  -0.050215 012006 -0.0084492 0.15031  -0.044045 -0.006932
5 & - e s o | ao | oo @ el os ol ol oo || o =0 | 5 | 3 NB 046813 071756 0041973 072012 076312 057752 0076383  -0.12096 081782 0030427 -0.7507  0.89426
RB 058401 078795  0.0027489 077759 075126 055081 02815 -0.0084492 0.81782 018664  -0.79942  0.88746
10 69 118 3200 a1 33 259 943 200 686 29 27 674 10 4.49 1112 119.7 85 63
u 0012455 0012894 |0.014244 007226 010691 020643  -0.63521  0.5031  -0.030427 -0.18664 00092227 |-0.11037
2B 2 107.5 CCSUNE M2UM S COM A 350 0 I 0 71 o O L . 7 2595 2562 s1titios ™ 053583 095715  -0.0051581 096249  0.88669 040807  0.081504  -0.044045 -0.7507  |-0.79942  0.0092227 -0.79443
13 88 122 30 19 24 129 289 40 s 1089 53 935 13 183 %8 22 0 7 T 050934 076939  0.10591 077617 077485 053463  0.10293  -0.096032 089426  0.88746  -0.11037  -0.79443
1 ss 15 660 38 32 217 760 310 50 378 32 60 13 375 1061 se1 0 60 As 020773 0.32656 |-0.093352 021183 024763 034152 024679 020603 026883 032194 046611 030133  0.22816
5 |3 - m | s | o | s | a0 | = || ma | @ | e | 2] 5 a11 55 = | o cs 0072648 020065  -0.036181 025418 020177 010383 075412  -0.09801  -0.079188 0.080846  -0.37248 030078  -0.067257
SN 073552  -0.50186  0.15003  -0.60059 |-0.47931  -0.47726 028084  0.15550  0.56749  0.78645  0.019273 -0.5946  0.62395
16 19 120 4520 17 34 81 114 40 526 10.01 45 822 13 0.79 20.12 46.5 46 72
17 24 116 4240 26 36 18.0 43.1 120 333 13.12 37 675 18 252 1.2 2353 50 57
18 93 100 3520 24 34 134 237 40 440 9.93 43 812 8 16 18.94 279.4 39 59
19 92 93 4960 19 43 127 200 120 630 125 50 923 7 117 23.64 571.8 62 72
20 81 80 6440 18 37 9.4 118 50 586 12.67 46 895 13 121 256 288.8 55 77
21 79 69 3240 40 34 26.9 101.0 40 397 22 33 612 18 4.73 843 1010.7 38 58
22 79 60 3300 a1 37 23.0 1299 560 684 9.9 35 679 11 42 13.57 16.9 102 55
n @ o a0 s o min w0 s nas  m om & amm e s m e

A Factor Analysis example - PAST

The Sn-W mineralized granite of Regoufe (Portugal)

PC eigenvalues: how much of the original variance is captured by each PC

Scatter plot | Scores | Loadings plot | Loadings | Scree plot

®Se®
PC Eigenvalu % variance
1 7.24719 45295
2 260592  16.287
3 1.56877  9.8048
4 1.28902  8.0563
5 0.960919 6.0057
6 0.64666  4.0416
7 0.477462 2.9841
8 0.293343 1.8334
9 0.279331 1.7458
10 0.172708 1.0794
" 0.15083  0.94269
12 0.117418 0.73386
13 0.0919825 0.57489
14 0.0480764 0.30048
15 0.0286725 0.1792
16 0.0217038 0.13565
0 Close

Copy

Matrix
Correlation

Groups
Disreqgard

Missing values

Mean value imputatic |}

Bootstrap N:

Recompute

[ Detach tab

B Print

Summary

Eigenvalue %

Principal components analysis
Scatter plot | Scores | Loadings plot | Loadings ﬁ

451
401
351
30
251
201
154
104

6 Close
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A Factor Analysis example - PAST

The Sn-W mineralized granite of Regoufe (Portugal)

A variable’s communality tells you how much of its variance is explained by
your factors. In this case, for 4 factors:

Communalities

Extraction

Initial

1.000 728
1.000 .944
1.000 698
1.000 .905
1.000 .901
1.000 675
1.000 .899
1.000 .710
1.000 .790
1.000 923
1.000 .624
1.000  .935
1.000 .860
1.000 723
1.000 .820
1.000 .873




A Factor Analysis example - PAST

The Sn-W mineralized granite of Regoufe (Portugal)

A Factor Analysis example - PAST

The Sn-W mineralized granite of Regoufe (Portugal)

Summary | Scatter plot Loadings plot = Loadings

Variable o o PC1 PC2 PC3 PC4
. 2 0.82047 1.2982 -1.6875 0.54203 The scores for each
loadings Zi 06 3 22156 2.2375 019651 -0.72032 | th
s 02 |'| 5 04 4 -1.5725 1.2107 083885  -0.11722 gamp eonthe
s a £ g il n an ” 5 064699 11837 096398 -1.4718 different factors
8 02 H U § aed I - 6 25503 19959 23628 -0.84471
04 02 ™ 086607 086924  -0.16158  -0.85254
08 04 |_| 8 3.8211 -3.347 2.8373 -0.95335
0.8 PC1 06 PC2 9 3.2084 -2.6937 0.55837 -1.5285
e S I R .
12 5.0685 046625  1.8525 5.2839
os 080 13 3.8793 046543  -0.14352  -0.37514
0t 064 14 004771 10882  3.0333 -1.1993
0 048 15 18972 1.454 042957  -0.093339
5 o § oz 16 3.6772 028091 -061238  0.39277
. é o6 |‘| 17 093084 19372 025046  0.61637
8 D I] il 8 Oi0m n lom =n 18 2.4969 0.64977  -1.1553 0.15791
I 0 oo 1| I 19 41089 10677 028669  0.42668
o ) 20 46143 041045 071633 070874
02 PC3 0% PC4 21 00720 27342 22684  -0.23563
O T E TR FeSSEESEE08Z 8 TgzuzesssEczzgaz 22 -1.559 21812 063526 021126
76501 567 . 354
njomo fum e jore

A Factor Analysis example - PAST

The Sn-W mineralized granite of Regoufe (Portugal)

Bi-plot: combines the data loadings on the PCs and the variable scores on the PCs
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A Factor Analysis example

The Sn-W mineralized granite of Regoufe (Portugal)

. PC1

A ‘ Tentative interpretation:

PC1: inverse of degree
of greisinisation
R | and albitisation

PC2: deuteric alteration
PC3: ore-related elements
PC4: different levels

within the granite
magma body




Factor Analysis vs. Cluster Analysis

the data set: the eating habits of Europe

Loading Plot | Storage | Template
Variables | Repoits | Score Plot
Variables:
|CIZIFFEE-YIZIEHLIHT =1 *
|
Data Input Format: Factor Selection - Method:
|Regular Data | |Percentof Eigenvalues |
Factor Rotation: Factor Selection - Value:
[varimax | =

Missing Value E stimation:

Ma Iterations:  Robust Weight:

[None =] |50 ~| Js0

Covariance E stimation: Matrix Type:

[Regular | |conelation |
| Filter Active

variables: the original variables as input

rotation: you can tell NCSS to perform
a PC rotation such as Varimax or none

missing values: if you have these you

have to tell NCSS how to deal with

them: row-wise exclusion, replace by

mean or estimate from correlations

matrix type: correlation or covariance

factor selection: start by selecting %
eigenvalues and setting this to 100%:
gives you all PCs. Can then decide that
only first 4 are meaningful and change

this

Principle component analysis - PCA

output: the eating habits of Europe

Descriptive Statistics Section

Standard
Variables Count Mean Deviation Communality
Coffee 16 775 2576561 1.000000
Nescafe 16 3925 2314735 1.000000
Tea 16 785 1854005 1.000000
Sweetener 16 17.1875 11.02252 1.000000
Biscuits 16 60.875 19.18637 1.000000
Pack_soup 16 49 1542725 1.000000
Tin_soup 16 18.4375 202154 1.000000
Frozen_fish 16 21875 13.98034 1.000000
Frozen_veg 16 15875 12.78997 1.000000
Fresh_apples 16 66.8125 1758112 1.000000
Tin_fruit 16 419375 2325645 1.000000
Jam 16 551875 2259268 1.000000
Garlic 16 423125 3467702 1.000000
Butter 16 758125 2091002 1.000000
Margerine 16 69 2673076 1.000000
Olive_oil 16 541875 288426 1.000000
Yoghurt 16 20625 18.34076 1.000000

Principle component analysis - PCA

Correlation Section

Variables
Coffee
Nescafe
Tea
Sweetener
Biscuits
Pack_soup
Tin_soup
Frozen_fish
Frozen_veg
Fresh_apples
Tin_fruit
Jam

Garlic
Butter
Margerine
Olive_oil
Yoghurt

Variables
Coffee
1.000000
-0.451482
0154771
0267487
0108133
-0.302228
-0.238387
0.409759
0315186
0241139
-0.100075
-0.385434
0.110990
-0.140384
0174813
0022293
0313610

output: the eating habits of Europe

Nescafe
-0.451482
1.000000
0290961
0228696
0259018
0727154
0506803
0291814
0064515
0.480764
0694902
0383235
0033616
0.154920
0387019
0075116
0.497244

Tea

0154771

0.290961
1.000000
0669251
0.209905
0441225
0523398
0320735
0.478507
0.133454
0546430
0538513

-0593807

0302403
0534448

-0.480293

0003725

Sweetener
0.267487
0.228696
0669251
1.000000
0.186738
0226212
0.495064
0617516
0.514964
0.423680
0646054
0.410780

-0520098
0.094169
0351163

-0.432305
0.196254

Bis cuits Pack_soup Tin_soup  Frozen_fish  Frozen_veg
-0.106133 0302228 -0.238387 0.409753 0315186
0259018 0727154 0506803 -0291814 -0064515
0.209905 0441225 0523398 0320735 0.478507
0186738 0226212 0495064 0617516 08514964
1.000000 0313521 0548802 0029017 0232484
0313521 1.000000 0244120 0243882 -0085481
0548802 0244120 1.000000 0189154 0474401
0029017 -0.243882 0189154 1.000000 0905160
0232484 -0.085481 0474401 0905160 1.000000
0538291 0.480530 0335071 0.030005 0.285694
0672017 0613927 0740128 0269813 0530707
0.431766 0.366098 0729504 0.088306 0.339465
-0351444 0015203 -0.546658 -0322249 -0.473994
0.455585 0.114699 0.133634 0.043929 0.186117
0.233069 0319930 0.300857 0031041 0.148003
-0.139580 -0.049143 -0.183091 -0.111702 -0.197097
0011225 0.409263 0036074 -0.259675 -0.144018

Principle component analysis - PCA

Bar Chart of Absolute Correlation Section

Variables
Coffee
Nescafe
Tea
Sweetener
Biscuits
Pack_soup
Tin_soup
Frozen_fish
Frozen_veg
Fresh_apples
Tin_frut
Jam

Garlic
Butter
Margerine
Olive_oil
Yoghurt

Variables
Coffee

Nescafe

Sweetener
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T
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output: the eating habits of Europe

Tin_soup
It

T
I
T
I

it

Frozen_fish
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Frozen_veg
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Principle component analysis - PCA

output: the eating habits of Europe

Eigenvalues
Individual Cumulative 6
No. Eigenvalue Percent Percent Scree Plot
1 6.020081 3541 3541 I
2 31586737 1857 5398 Il
3 2139819 1259 B6.57 Il
4 1.425082 838 7495 I
5 1078415 634 8129 I
B 1037413 6.10 87.40 I
7 0642829 378 91.18 |
8 0.465207 274 9392 |
9 0368342 217 96.08 |
10 0319876 188 9796 |
1" 0172233 101 9898 |
12 0.106809 063 9960 |
13 0037875 022 9983 |
14 0026913 0.16 9999 |
15 0.002364 001 100.00 |
16 0.000000 0.00 100.00
17 0.000000 000 10000 12 3 4 5 6 7 8 9 1011 12 13 14 15 16 17

now rerun the routine for up to 4 principle components

Principle component analysis - PCA

Descriptive Statistics Section

Variables
Coffee
Nescafe
Tea
Sweetener
Biscuits
Pack_soup
Tin_soup
Frozen_fish
Frozen_veg
Fresh_apples
Tin_fruit
Jam

Garlic
Butter
Margerine
Olive_oil
Yoghurt

Count
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16

Mean
775
3925
785
17.1875
60875
49
18.4375
21875
15875
668125
419375
551875
423125
758125
69
541875
20625

output: the eating habits of Europe

Standard
Deviation
2576561
2314735
1854005
1102252
19.18637
1542725
202154
13.98034
1278997
17568112
2325645
2259268
3467702
2091002
26.73076
288426
18.34076

Communality
0825747
0826203
0712119
0.885670
0638357
0712475
0687004
0848950
0936613
0781884
0929247
0.706079
0839802
0.386488
0.404393
0682256
0874905

Principle component analysis - PCA

output: the eating habits of Europe - coefficients

Bar Chart of Absolute Eigenvectors after Varimax Rotation

Factors
Variables Factor1 Factor2 Factor3 Factord4
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Jam [l | I |
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Butter Il Il | i
Margerine [T | I il

Olve_oil [l Il I [
Yoghurt Il i [ I

Principle component analysis - PCA

output: the eating habits of Europe - correlations

Bar Chart of Absolute Factor Loadings after Varimax Rotation
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Principle component analysis - PCA

output: the eating habits of Europe

Factor Structure Summary after Varimax Rotation

Factor1
Frozen_fish
Frozen_veqg
Coffee
Sweetener

Factors
Factor2
Yoghurt
Fresh_apples
Nescafe
Pack_soup
Tin_fruit

Factor3
Garlic

Tea
Olwve_oil
Jam
Sweetener
Margerine
Tin_soup

Factord
Biscuits
Tin_fruit
Butter
Tin_soup

Principle component analysis - PCA

output: the eating habits of Europe - new row transformation

Factor Score after Varimax Rotation

Factors
Row Factor1 Factor2 Factor3 Factord
1 -0.3644 0.3788 -0.0904 0.3360
2 06165 -06782 1.4195 -0.0559
3 0.2665 12995 1.05893 -0.0254
4 -0.0786 18754 -1.6456 -1.3972
5 0.0605 -0.1348 0.7957 07732
5} -0.7204 1.4754 09845 1.0832
7 082381 -0.0470 -1.1348 23280
8 07444 -1.1724 0.7406 -1.0016
9 05602 -06078 -0.3117 -1.5889
10 0.0995 15130 0.0692 -05877
1 -1.8878 -1.1434 -05358 0.4995
12 -1.9707 -05770 -06248 02745
13 -0.1946 -06458 -06321 06754
14 -0.4299 -0.7455 -0.1961 -07278
15 0.3406 -0.2631 15489 0.0244
16 21301 -05269 -1.4462 07452

Factord

Principle component analysis - SIMCA

output: the eating habits of Europe

Factor3
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PLS-R and PLS-DA

An extension to eigenvector methods with a dependent variable

PCA and FA re-cast the independent variable matrix into a new coordinate system
aligned with the directions of maximum variance with the aim of separating noise
from information, reducing the dimensionality of your data, and identify processes

PLS-R and PLS-DA re-cast the independent variable matrix into a new coordinate
system aligned with a dependent variable (Y = f(X) ) with the aim of classification
(-DA) or quantification of a regression model (-R), for example for calibration.

You can of course do a DA or R based on the original variables, but you here
make the assumption that there are directions in your data that better line up
with Y than the original variables —> you obtain those from a PCA-style

transformation of your data




PLS-DA example with the Unscrambler

PLS-DA example with the Unscrambler

Correlation Loadings (X and Y)
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Geotop Short Course in Data Analysis and Geostatistics
Spatial analysis of data

FA - processes in Massif Central dataset

Loadings show the importance of that factor at each location
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FA - processes in Massif Central dataset

Loadings show the importance of that factor at each location
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Clustering - groups in Massif Central dataset

Fuzzy cluster assignment shows spatial grouping of samples
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Plotting data on maps: bubble plots

Data are plotted at their spatial coordinates with a symbol whose size
represents the value of the data point

Can apply exactly the same tools
as used on the element map:

adjust contrast, isolate features
and perform data transformations

can also overlay these bubbles on
another layer, such as a topo map,
geol map, stream map etc
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Plotting data on maps: bubble plots

Stream sediments as a reflection of the local geology: Beryllium

2000-¢
1500 *
1000+° °

5004

Be concentrations
without processing:

sometimes it just
works!

Plotting data on maps: bubble plots

Silver concentrations: working with a non-normal distribution
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Plotting data on maps: bubble plots

Don’t have to plot all the data in the dataset: applying a cut-off at low values
will highlight interesting samples, whereas a high cut-off removes outliers

Zn, only data
with > 50 ppm




Plotting data on maps: bubble plots

Looking for element associations by combining bubble plots

Cd

Zn

Sb

Plotting data on maps

Combining elements by using multi-coloured bubble plots is useful, but fast
becomes confusing: can lead you to miss interesting samples

Can also calculate such associations beforehand and plot them directly:
e Sb+2Zn

e Sb/Zn

Or you can apply logical rules to the data before plotting:
¢ plot Sbif S > 200 ppm
e if SiO2 > 60 wt% then plot K/ Zr

Note that such properties are calculated much easier and faster in programs
designed for such calculations: e.g. Excel or Quattro Pro

Plotting data on maps: QGIS and BC dataset

The BC survey makes a digital version of its geological map available onto
which you can plot their geochemical data: need a GIS package (qgis.org)

Download the geol map as a shape file here: https://www2.gov.bc.ca/gov/
content/industry/mineral-exploration-mining/british-columbia-geological-
survey/publications/digital-geoscience-data

make a new file in QGIS, go to project > properties > CRS and set the
coordinate system of the file to 3005

Drag the .shp file into the layers panel. To get the correct colours, go to layer
properties > symbology > categorized > style > load style > open file: open
the .gml file.

To get your data in, export the excel file as a .csv. Then in QGIS > add layer >
add delimited text layer > open your .csv file. Make sure longitude and
latitude are selected as x and y fields and set the CRS to 4326 (WGS 1984)

To do fun stuff: click on symbology > graduated > method:size > value:Co >
mode:equal interval > classify > apply. You now have a bubble plot for Co

o

Plotting data on maps: QGIS and BC dataset

The BC survey makes a digital version of its geological map available onto
which you can plot your geochemical data: need a GIS package (qgis.org)
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Plotting data on maps

Not limited to plotting data, but can also plot derived properties such as the
mean, median, standard deviation, etc

and not just values, but also other observations:
geol code / vegetation / mode in multi-modal distribution

Plotting data on maps: bubble plots

Plotting processed data - standard deviation: the variability at a sample site

Spatial data visualization

To be able to calculate contours and surfaces: interpolation

w o7 need to know the concentration at
o any point in the sampling space to
d o . . " be able to draw smooth contours:

100

5 interpolate between values

oXo

Q o o o

interpolation on As content grid;

O o O 0 o

X nearest neighbour

o ©

o radius technique: 1/r

o radius technique: 1/r2

0o

©o0000® -
e
« - 0000 .

Spatial data visualization

Results of different interpolation techniques:
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Spatial data visualization Interpolation radius

To be able to calculate contours and surfaces: interpolation Spatial data have a very useful property:
N .y . interpolation on As content grid; adjacent samples _sh_ould bg most similar, whereas samples that are
. .. o0 N . far apart can be distinctly different, or:
1201 . ’ ' T X nearest neighbour the variance for a small interpolation radius is small, as the variance
R .. . . . | o radius technique: 1/r between adjacent samples is small
o o " o ) ) the variance increases as the interpolation radius increases (i.e. as
foe e .o x 0 o radius technique: 1/r2 samples further away from the point of interest are included)
i Z ° X (o)/ at some radius the variance will no longer increase as we have reached
60 6 o o X o I the overall variance, which is called the “regional variance”
o o O o} main issue: what samples should
“o o o o o T be included in the interpolation: including values beyond the regional variance radius is pointless as
o o e} | e e e e sugh samples do not contain any information on the value at the
*q : o - point of interest
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Interpolation radius
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Semivariance and semivariograms

This concept is semivariance and is shown in a semivariogram

the variance between samples a specified interval
or distance apart

semivariance:

as the interval increases, the semivariance will approach the total variance
of the data set, so it is a spatially controlled partial variance of the data

Sz - z, )2 with: y = semivariance for interval h
Vi = S T n = total number of samples
2(n - h) zi = value at position i

as h increases, the relatedness of the samples decreases and the variance
will therefore increase:

Semivariance and semivariograms

plotting the semivariance against h: semivriogram

concentration concentration

concentration

—_

semivariance
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_ :
distance interval
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distance

interval

no relation with
distance: random

gradual changes in
concentration

continuous variation
with distance: trend

Semivariance and semivariograms

properties of a semivariogram :

Sio2
Direction: 0.0 Tolerance: 90.0

Ca0o
Direction: 00 Tolerance: 900

semivariance

range range

interval interval

the range is the interval within which there is similarity between the samples




Semivariance and semivariograms

Semivariograms provide our maximum radius criterion: only
samples that fall within the range are included in interpolation

before we continue, a few notes:

» semivariograms have to be determined for each variable as each has its own
range: interpolation has to be performed separately as well

» semivariograms are generally different for different spatial directions (N, SW, etc).
Such anisotropy can point to an underlying geological phenomenon such as
layering or a fault control on conc. This can be corrected for either manually by
stretching the coordinate system perpendicular to the main axis, or automatically
by kriging software

» most semivariagrams have an apparent cut-off at zero distance that has a
semivariance # 0. This is called the nugget effect and is caused by sample
heterogeneity (= field duplicate variance)

Nugget effect in semi-variograms

0.34

semivariance

0.14

nugget

range

3 + H 5

interval

There is always some uncer-
tainty at a given sample site,
which you could quantify by
taking field duplicates.

This sample site variance is
the “nugget” in a semivario-
gram (in essence the variance
at zero distance)

Every element will have such
a nugget, but the effect is
strongest for elements that
are heterogeneously distri-
buted, such as gold present
as nuggets in a sediment
because we use mean + var

Using semivariogram information: kriging

The interpolation technique that employs the range information
as obtained from semivariograms is called kriging

in kriging, only samples that are within the range are used to determine
the value at a given intermediate position and the weighing for each
sample is derived from its associated semivariance

A (Xi,yi) = w1« A (X1,y1) + wi2+ A (X2,y2) + Wiz~ A (X3,y3) + ...

as an added bonus this also gives us the variance associated with
each interpolated value (the uncertainty), so we can immediately see
where our interpolations are reliable and where they are not

because weights are based on the semivariance, obvious trends in the
data should be removed as this leads to a continuous rise in the semi-
variance: can be done by first subtracting a trend surface

Estimate of uncertainty for each interpolated value

95% confidence intervals

interpolation

observations [}

0

02

source: wikipedia.org

04

08

08 1




Uncertainty in block kriging of grades

Kriging is commonly applied to estimate the grade of blocks in open pit mining
using a sample grid or the grade of adjacent blocks (or both).

In such cases it is invaluable to know the uncertainty on the grade estimate

Back to our example

Results of different interpolation techniques:
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And now using kriging as the interpolation method

Results of kriging on this data set:
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Some data are not suited to interpolation/kriging

There is a strong tendency to directly start with the most complex or fancy
technique, such as kriging. However, kriging is not always appropriate !

raw concentrations plotted optimized kriging map




Kriging and sample coverage

Kriging works best when you have a high sample density and a more or less
uniform distribution of data over the sample are. If not > get artefacts

Areas without samples need to be blanketed out, not just removed afterwards

Geotop Short Course in Data Analysis and Geostatistics
Short course summary

eofo
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Eigenvector techniques - highlights

Techniques to locate the principle directions in your dataset

» useful to reduce the dimensionality of a dataset to its principle directions -
greatly facilitates the interpretation

» the principle directions generally represent the underlying processes that
control the data distribution - process identification

some practicalities:

two main techniques: principle component analysis and factor analysis - very
similar, but PCA is a true data transformation (no loss of info) whereas FA
retains only a subset of the variance

eigenvector techniques are basically a clustering of the variables based on their
correlation/covariance similarity - high cor/cov: same trend, low cor/cov:
different trend

have to carefully decide the number of significant factors - use the scree plot. If
a more appropriate interpretation can be made using more or less factors
than the number suggested by the scree plot - no problem

Spatial analysis - highlights

Spatial analysis of data is a great technique to:

» interact with your data, spot trends, correlations, outliers, clustering, and
thereby suggests ways to analyze and interpret your data

» link your data to all kinds of other spatial information, such as position of
roads, towns, rivers, ice cover, topography, geology, soil type, vegetation, etc

» disseminate your results to others: easy to understand

some practicalities:

advanced methods need a dedicated sampling design, otherwise stick to the
more basic techniques such as bubble plots

when a dense uniform sampling grid is available, best results for Earth Science
datasets are generally obtained by using kriging and semivariance

trend surfaces are a further powerful technique to interpret spatial data and de-
trending should be performed before kriging




Clustering techniques - highlights

Clustering of data is used to:

» split up multi-modal datasets so they can be analyzed with other statistical
techniques, such as t-tests and ANOVA

» look for homogeneous groups in the data, which can tell you something
about the main separating processes acting upon the data

» classify samples: assign samples to pre-determined groups

some practicalities:

many varieties of separation techniques: DFA, hierarchical clustering, fixed or
sought cluster means, partitioning clustering using hard and fuzzy rules, etc

fuzzy clustering is the most powerful for geochemical datasets as it gives the
partial membership to each cluster, thereby being able to cope with
intermediate samples

as in eigenvector techniques, the main difficulty is in deciding the number of
clusters. A variety of parameters can help you make that decision, but feel
free to deviate (e.g. outliers commonly get their own cluster)

Regression analysis - highlights

Regression analysis is a technique:

» that allows you to fit a quantitative model to data that can subsequently be
used in mathematical models. Also allows for inter- and extrapolation

» that allows you to determine whether a variable explains a significant part of
the variance in the dataset: in other words, whether it belongs in the model

» test what the best model is to describe your data (linear, quadratic, logarith-
mic, exponential, multiple linear, etc)

some practicalities:

the best regression fit has maximum variance along the regression line and
minimal on either side. The ratio of explained over total variance is R2.

important assumptions in regression analysis that have to be met: always check
normality of residuals, multi-collinearity, significance of coefficients, etc

Testing - highlights

Statistical testing:
» test the validity of a hypothesis at a specified confidence interval a

» rejection of the null-hypothesis is the stronger results: choose your
hypotheses carefully

» all techniques work in exactly the same way: each test has a probability
distribution: exceed the critical probability (a) and the hypothesis is rejected,
otherwise: no reason to reject the null hypothesis

» crucial to keep the errors in mind when testing: type | - known, specified as
the confidence interval in testing results; type Il - unknown

» many statistical tests, optimized for specific hypotheses, data distributions,
etc (e.g. t-test, Z-test, F-test, ANOVA, Kolmogorov-Smirnov, x2-test)

» most commonly used: t-test/ANOVA - determine whether a number of
groups/clusters are significantly
different from each other

x2-test - determine whether two data distributions or
curves are significantly different

Basic techniques - highlights

data description:
central value: mean, median, mode
measures of spread: range, stdev, IQR, percentile, accuracy vs. precision
normal versus robust techniques
type of distribution: normal, lognormal, multi-modal, outliers

data visualization: histograms, boxplots, scatter diagrams, violin plots, etc

correlation:

correlation between variables expressed by a Pearson or Spearman correlation
coefficient. To quickly assess correlations for a complex data matrix: cor matrix

error propagation:

technique to propagate the uncertainty on the measured values to the property
you are deriving. Easiest way to do this: split up the equation to its most basic
operators: add - subtract - multiply - divide




The end....

If you take nothing else away from this course,
remember these:

garbage in = garbage out

most scientists use statistics as the drunkard uses a
lamppost; for support rather than illumination




