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Vector methods, PCA, FA and PLS

A few words of caution….

Eigenvector and clustering methods are extremely powerful aids in understanding 
your data, and the underlying processes that control the variability in your study

However;


“Principal component analysis belongs to that category of techniques, including 
cluster analysis, in which appropriateness is judged more by performance and utility 

than by theoretical considerations”

Davis, 3rd ed., 2002 

And;


Eigenvector methods require there to be multidimensional correlations in the data set 
with meaningful causation —> if these are absent, they are not going to magically 

appear, and eigenvector methods are useless. 


Also, if they are present in 2-D, there is no added value in multi-D —> you look for 
hidden directions in your data in eigenvector methods

Eigenvector methods

Two main techniques: principle component and factor analysis

1D

both techniques perform a transformation of the data to allow for easier 
interpretation through:


- reduction of variables

- suggestion of underlying processes
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Eigenvector methods
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System can be transformed to its principle components 

PC-1

PC-2

majority of the variance in this system resides in PC-1 and PC-2 can be interpreted 
as just the scatter/noise in the data:


dimensionality of the system reduced from 2-D to 1-D 

without losing any information !

The data have been re-cast into a new coordinate system where the axes are 
the principal processes operating on your data + noise

Eigenvector methods - PCA and FA

• Principle components are the principle non-correlated directions in your data 
set (maximized variation along, minimized variation perpendicular to PC)


• Nowadays datasets with 50 to 100 variables are not uncommon. A reduction 
to a much smaller number of unrelated variables (the Factors) makes it much 
easier to mine such a dataset


• In PCA all variance is redistributed to new PCs, resulting in the same number 
of PCs as original variables. 


• In FA, only those PCs that are informative are retained and the remainder is 
discarded as noise. The PCs can also be rotated to simplify interpretation. 


• Strictly speaking PCA is a mathematical transformation of your data that 
retains all information, whereas FA is an interpretive model of your data. 


• In reality, most software package call both PCA

General notes on Principle Component Analysis and Factor Analysis

Principle component analysis - PCA

Especially useful in multi-D space
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have already seen an example of this 
approach when looking at DFA:

5-D replaced by 2 vectors that allow 
you to recognize clustering in the data:

this was not obvious in original data


However;

in this case the data are correlated in 
this 2-D vector space, whereas PCs 
are not allowed to be correlated


Principle components are the principle 
non-correlated directions in your data 
set

Principle component analysis - PCA

So what do we do in principle component analysis ?

look in the data for vectors that have maximum variance along them 

(i.e. a strong correlation/covariance)

as all variables that display the same correlation/covariance are grouped 
together, the trend they describe cannot be shared with any other PC

PC-1 = vector that explains most of the variance

the strongest direction in your data


PC-2 = vector that next explains most of the residual variance

PC-3 = vector that next explains most of the residual variance

etc

so PC-1 explains more variance than any single original variable and 
therefore, PC-n explains less variance than a single variable (noise)



Principle component analysis - PCA

So what do these principle components look like ?

PC:   PC1 = a11X1 + a12X2 + a13X3 + a14X4 + a15X5 + ....

   PC2 = a21X1 + a22X2 + a23X3 + a24X4 + a25X5 + ....

   PC3 = a31X1 + a32X2 + a33X3 + a34X4 + a35X5 + ....

   PC4 = a41X1 + a42X2 + a43X3 + a44X4 + a45X5 + ....

 .....

Xi = original vars

aij = coefficients that 
relate the original 
vars to the PCs

Note that to satisfy multi-non-colinearity some of the a-coefficients have to be 0

         PC1         a11 a12 a13 a14 a15

   PC2         a21 a22 a23 a24 a25

   PC3         a31 a32 a33 a34 a35

   PC4         a41 a42 a43 a44 a45

X1

X2

X3

X4

X5

= .
PC = A X

in matrix notation:

intelligence
optimist

Another way to explain PCA: psychological questionnaires

Principle component analysis - PCA

A psychologist want to know your intelligence, 
whether you are extroverted, a pessimist, etc. 


Have to work this out from indirect questions 
that correlate with the variable that you are 
interested in (e.g. intelligence, optimism, etc)


Many questions lead to a small number of 
ultimate variables

         PC1         a11 a12 a13 a14 a15

   PC2         a21 a22 a23 a24 a25

   PC3         a31 a32 a33 a34 a35

   PC4         a41 a42 a43 a44 a45

X1

X2

X3

X4

X5

= .

lazy

matrix A tells you how

to score the answers

Principle component analysis - PCA

The transformation matrix A is what you want to obtain

the matrix that translates the original variables to line up with the 
principle directions in the data: the PCs


so,     it redistributes the variance of the original variables over the PCs, 

  maximizing it for PC1:    Var(PC1) = max

  it ensures that the PCs are uncorrelated:     Cov(PCi-PCi+1) = 0

The matrix A is obtained from the covariance or the correlation matrix

Note that we are only translating the data to a new coordination system: no info loss !

when all variables are 
equivalent (e.g. all 
wt%, all ppm, etc)

when mixing variables 
(e.g. ppm + wt% + pH)

Principle component analysis - PCA

Link with correlation makes sense (I hope):
all variables that are correlated define one trend in the data so they should 
be combined in one PC, and this PC and its component variables should 
have an insignificant correlation with all remaining variables and PCs

e.g. 5 variables with the following correlation matrix:

1 2 3 4 5
1 - 0.85 0.14 0.23 0.78
2 - - 0.21 0.19 0.95
3 - - - 0.9 0.25
4 - - - - 0.13
5 - - - - -

strong 
correlations:


1 & 2

1 & 5

2 & 5


3 & 4

weak 
correlations:


1 & 3

1 & 4

2 & 3

2 & 4

5 & 3

5 & 4

so, this dat set has two PCs, with low correlation between them



Principle component analysis - PCA

Strong reduction in dimensionality: 5D to 2D
this allows for much easier data visualization and (hopefully) interpretation


+ 

it may point to two underlying processes, affecting a different set of vars

a good way to represent this 
is to plot it in variable space


Now you get two clusters of 
variables and these are your 
PCs


So in a way, PCA is cluster 
analysis on your variables
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Principle component analysis - PCA

So how do we obtain the transformation matrix from cor/cov ?

have to determine the eigenvectors in the correlation or covariance matrix

these are the weights that relate the original variables to the PC vectors


and scale these so that the variance of a PC equals 1

PC = U L-0.5  X   in matrix notation

this is the PC vector

i.e. the new variables

these are the original 
variables, i.e. the input

the eigenvector 
matrix of the 
cor/cov matrix

the diagonal eigen- 
value matrix of the 
cor/cov matrix, i.e. 
the scale factor

input: 

original vars


operator: 
eigenvector matrix 

scaled by 
eigenvalues


output: 

PC vectorpu
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Principle component analysis - PCA

Si Al Cu Zn pH T

PC-1 0.6 -0.2 0.1 0.3 -0.4 0.9

PC-2 0.3 0.7 -0.2 -0.1 0.6 -0.1

PC-3 0.1 -0.1 0.9 0.8 -0.7 0.4

PC-4 -0.2 0.2 -0.3 0.1 -0.4 -0.2

....

An example for thermal spring data from the Rockies:
the coefficients are 
the factor loading:


the correlation 
between the original 
variables and the PCs


they display a clear 
grouping of variables

PC-1:   Si and T - as T increases the solubility increases

PC-2:   Al and pH - unclear, clay effect? speciation?

PC-3:   Ca, Zn, -pH  and ±T - low pH + high conc. base metals: sulfides

PC-4:   no clear associations - residual noise ?

You get as many PCs as there are original variables, but not all will be meaningful. 

Principle component analysis - PCA

The variance in the original variables is redistributed;

the eigenvalues show you how much variance a PC explains compared to the 
original variables and this value can therefore be used to define a cut-off:


- all eigenvalues less than 1 are insignificant (generally too restrictive)

- use a scree plot (PC-number versus eigenvalue) - where there is a kink in this 

   plot: boundary - use all PCs up to this point and one beyond

- maximum likelihood method - the goodness-of-fit of the factor model is iteratively 

   tested using the X2 test and additional factors are calculated from the residual 

   covariance/correlation matrix only if it fails the X2 test

PC-1 will have a variance greater than a single original variable (it explains more 
variance in the data set than a single original variable)

so, subsequent PCs will eventually explain less variance than a single original var


such PCs can generally be ignored thereby reducing the dimensionality

but where should we put the boundary?



Restricting the number of PCs: FA

The variance in the original variables is redistributed;
PC-1 will have a variance greater than a single original variable (it explains more 
variance in the data set than a single original variable)

so, subsequent PCs will eventually explain less variance than a single original var


such PCs can generally be ignored thereby reducing the dimensionality

The cut-off can be determined

in a scree-plot

PC number
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Principle component analysis - PCA

To facilitate interpretation the resulting PCs are commonly 
rotated in multi-dimensional space

The most popular technique is Varimax rotation:

“rotation to maximize the variance of the squared loadings within each column of the loadings matrix” 


this rotation results in the correlations with the original variables to be either 
large or small, so it enhances the contrast, producing PCs that are highly 
correlated with a few original variables and very weakly with the rest:


much easier to interpret, because it is immediately clear which variables are 
important and that in turn can directly point to the underlying process

Varimax rotation

Fe

Mn

Ba

S

F

RbZn

PC1

PC2

A Factor Analysis example using PAST

The Sn-W mineralized granite of Regoufe (Portugal)

6 km2


55 samples


After cleaning

15 elements


All elements log-transformed




A Factor Analysis example

The Sn-W mineralized granite of Regoufe (Portugal)

NR XCO YCO F ZR SR CE BA B LI W NB RB U TH TA AS CS SN

1 94 36 3520 29 53 14.6 24.6 540 758 11.8 38 715 5 1.62 14.28 2.6 48 44

2 94 45 3020 43 34 28.1 94.0 640 785 15.5 31 624 4 4.81 10.26 5.4 73 48

3 81 46 3800 43 33 28.8 108.7 280 647 14.43 31 669 7 5.2 11.51 206.4 68 54

4 75 40 3320 27 26 15.2 38.5 330 627 18.66 36 683 1 2.69 12.72 65.1 58 57

5 60 35 2040 31 25 21.2 76.0 860 317 11.02 19 542 11 3.69 9.13 84.7 29 34

6 77 31 2920 29 29 17.2 58.3 360 592 16.78 37 748 8 2.83 17.86 80.5 66 69

7 56 134 4020 19 32 16.2 18.0 70 442 16.71 43 869 20 1.75 19.9 2592.3 44 70

8 65 127 2840 19 15 9.3 32.0 50 423 16.75 53 782 21 1.43 20.05 1045.0 45 64

9 81 130 3600 21 38 17.9 39.0 40 517 19.85 44 889 8 2.23 15.51 463.8 56 76

10 69 118 3200 41 33 25.9 94.3 200 686 29 27 674 10 4.49 11.12 119.7 85 63

12 96 107.5 6880 20 100 8.3 38.0 40 488 10.74 51 840 13 1.17 25.95 256.2 51 101

13 88 112 3800 19 24 12.9 28.9 40 594 10.89 53 935 13 1.83 26.8 210.2 60 74

14 58 115 6160 38 32 21.7 76.0 310 520 37.85 32 601 13 3.75 10.61 588.1 50 60

15 45 113 4280 45 30 27.1 99.9 320 666 11.1 28 638 7 5 8.11 57.5 71 49

16 19 120 4520 17 34 8.1 11.4 40 526 10.01 45 822 13 0.79 20.12 46.5 46 72

17 24 116 4240 26 36 18.0 43.1 120 333 13.12 37 675 18 2.52 11.2 235.3 50 57

18 93 100 3520 24 34 13.4 23.7 40 440 9.93 43 812 8 1.6 18.94 279.4 39 59

19 92 93 4960 19 43 12.7 20.0 120 630 12.5 50 923 7 1.17 23.64 571.8 62 72

20 81 80 6440 18 37 9.4 11.8 50 586 12.67 46 895 13 1.21 25.6 288.8 55 77

21 79 69 3240 40 34 26.9 101.0 40 397 22 33 612 18 4.73 8.43 1010.7 38 58

22 79 60 3300 41 37 23.0 129.9 560 684 9.9 35 679 11 4.2 13.57 16.9 102 55

23 92 57 3720 43 32 24.0 81.0 340 832 10.75 33 703 6 4.75 15.53 58.8 113 63

A Factor Analysis example - PAST

The Sn-W mineralized granite of Regoufe (Portugal)

The correlation matrix

The Sn-W mineralized granite of Regoufe (Portugal)

A Factor Analysis example - PAST

PC eigenvalues: how much of the original variance is captured by each PC

The Sn-W mineralized granite of Regoufe (Portugal)

A Factor Analysis example - PAST

Communalities	 	 

	 Initial	 Extraction

F	 1.000	 .728

ZR	 1.000	 .944

SR	 1.000	 .698

CE	 1.000	 .905

BA	 1.000	 .901

B	 1.000	 .675

LI	 1.000	 .899

W	 1.000	 .710

NB	 1.000	 .790

RB	 1.000	 .923

U	 1.000	 .624

TH	 1.000	 .935

TA	 1.000	 .860

AS	 1.000	 .723

CS	 1.000	 .820

SN	 1.000	 .873

Extraction	Method:	Principal	Component	Analysis.	

A variable’s communality tells you how much of its variance is explained by

your factors. In this case, for 4 factors:



The Sn-W mineralized granite of Regoufe (Portugal)

A Factor Analysis example - PAST

Variable

loadings

PC1 PC2

PC3 PC4

The Sn-W mineralized granite of Regoufe (Portugal)

A Factor Analysis example - PAST

The scores for each 
sample on the 

different factors

The Sn-W mineralized granite of Regoufe (Portugal)

A Factor Analysis example - PAST

Bi-plot: combines the data loadings on the PCs and the variable scores on the PCs

PC1

PC2

PC3

PC4

A Factor Analysis example

The Sn-W mineralized granite of Regoufe (Portugal)

Tentative interpretation:


PC1: inverse of degree 

         of greisinisation 

         and albitisation


PC2: deuteric alteration


PC3: ore-related elements


PC4: different levels 

         within the granite 

         magma body

PC1 PC2

PC3 PC4



Factor Analysis vs. Cluster Analysis

the data set: the eating habits of Europe
variables: the original variables as input


rotation: you can tell NCSS to perform 
a PC rotation such as Varimax or none


missing values: if you have these you 
have to tell NCSS how to deal with 
them: row-wise exclusion, replace by 
mean or estimate from correlations


matrix type: correlation or covariance


factor selection: start by selecting % 
eigenvalues and setting this to 100%: 
gives you all PCs. Can then decide that 
only first 4 are meaningful and change 
this

Principle component analysis - PCA

output: the eating habits of Europe

Principle component analysis - PCA

output: the eating habits of Europe

Principle component analysis - PCA

output: the eating habits of Europe



Principle component analysis - PCA

output: the eating habits of Europe

now rerun the routine for up to 4 principle components

Principle component analysis - PCA

output: the eating habits of Europe

Principle component analysis - PCA

output: the eating habits of Europe - coefficients

Principle component analysis - PCA

output: the eating habits of Europe - correlations



Principle component analysis - PCA

output: the eating habits of Europe

Principle component analysis - PCA

output: the eating habits of Europe - new row transformation

Principle component analysis - SIMCA

output: the eating habits of Europe

PLS-R and PLS-DA

An extension to eigenvector methods with a dependent variable

You can of course do a DA or R based on the original variables, but you here 
make the assumption that there are directions in your data that better line up 
with Y than the original variables —> you obtain those from a PCA-style 
transformation of your data

PCA and FA re-cast the independent variable matrix into a new coordinate system 
aligned with the directions of maximum variance with the aim of separating noise 
from information, reducing the dimensionality of your data, and identify processes


PLS-R and PLS-DA re-cast the independent variable matrix into a new coordinate 
system aligned with a dependent variable ( Y = f(X) ) with the aim of classification    
(-DA) or quantification of a regression model (-R), for example for calibration.



PLS-DA example with the Unscrambler

DFA result

PLS-DA example with the Unscrambler

one misclassified

two outliers

DFA: K2O, P2O5

Cu, Sn and B

influential

variables:

PLS-DA example with the Unscrambler

predictions from the PLS model for the unknowns:

PLS-DA example with the Unscrambler

DFA result PLS result



Geotop Short Course in Data Analysis and Geostatistics�
Spatial analysis of data

FA - processes in Massif Central dataset
Loadings show the importance of that factor at each location

Factor 1

FA - processes in Massif Central dataset
Loadings show the importance of that factor at each location

Factor 1
Factor 2

cluster 4
cluster 8

Fuzzy cluster assignment shows spatial grouping of samples

Clustering - groups in Massif Central dataset



Plotting data on maps: bubble plots
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Data are plotted at their spatial coordinates with a symbol whose size 
represents the value of the data point

Can apply exactly the same tools 
as used on the element map:


adjust contrast, isolate features 
and perform data transformations


can also overlay these bubbles on 
another layer, such as a topo map, 
geol map, stream map etc

500 1000 1500 2000 2500 3000

500

1000

1500

2000

Plotting data on maps: bubble plots
Stream sediments as a reflection of the local geology: Beryllium

Be concentrations 
without processing:


sometimes it just 
works!

Plotting data on maps: bubble plots
Silver concentrations: working with a non-normal distribution
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Plotting data on maps: bubble plots
Don’t have to plot all the data in the dataset: applying a cut-off at low values 
will highlight interesting samples, whereas a high cut-off removes outliers

Zn, only data 
with > 50 ppm



Plotting data on maps: bubble plots
Looking for element associations by combining bubble plots

Cd


Zn


Sb


W

Plotting data on maps
Combining elements by using multi-coloured bubble plots is useful, but fast 
becomes confusing: can lead you to miss interesting samples

Can also calculate such associations beforehand and plot them directly:
• Sb + Zn

• Sb / Zn

Or you can apply logical rules to the data before plotting:
• plot Sb if S > 200 ppm

• if SiO2 > 60 wt% then plot K / Zr

Note that such properties are calculated much easier and faster in programs 
designed for such calculations: e.g. Excel or Quattro Pro

Plotting data on maps: QGIS and BC dataset
The BC survey makes a digital version of its geological map available onto 
which you can plot their geochemical data: need a GIS package (qgis.org)

Download the geol map as a shape file here: https://www2.gov.bc.ca/gov/
content/industry/mineral-exploration-mining/british-columbia-geological-
survey/publications/digital-geoscience-data

make a new file in QGIS, go to project > properties > CRS and set the 
coordinate system of the file to 3005

Drag the .shp file into the layers panel. To get the correct colours, go to layer 
properties > symbology > categorized > style > load style > open file: open 
the .qml file. 

To get your data in, export the excel file as a .csv. Then in QGIS > add layer > 
add delimited text layer > open your .csv file. Make sure longitude and 
latitude are selected as x and y fields and set the CRS to 4326 (WGS 1984)


To do fun stuff: click on symbology > graduated > method:size > value:Co > 
mode:equal interval > classify > apply. You now have a bubble plot for Co

Plotting data on maps: QGIS and BC dataset
The BC survey makes a digital version of its geological map available onto 
which you can plot your geochemical data: need a GIS package (qgis.org)



Not limited to plotting data, but can also plot derived properties such as the 
mean, median, standard deviation, etc


and not just values, but also other observations: 

geol code / vegetation / mode in multi-modal distribution

Plotting data on maps Plotting data on maps: bubble plots
Plotting processed data - standard deviation: the variability at a sample site

Spatial data visualization
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To be able to calculate contours and surfaces: interpolation

interpolation on As content grid;

x   nearest neighbour

x
x

x

o   radius technique: 1/ro
o   radius technique: 1/r2

o

need to know the concentration at 
any point in the sampling space to 
be able to draw smooth contours:


interpolate between values

Spatial data visualization
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Results of different interpolation techniques:
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Spatial data visualization
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140 interpolation on As content grid;

x   nearest neighbour

x
x

x

o   radius technique: 1/r

o

o   radius technique: 1/r2
o

main issue: what samples should 
be included in the interpolation:


what should the maximum radius be?

To be able to calculate contours and surfaces: interpolation

Interpolation radius

Spatial data have a very useful property: 
adjacent samples should be most similar, whereas samples that are 
far apart can be distinctly different, or:

the variance for a small interpolation radius is small, as the variance 

between adjacent samples is small 


the variance increases as the interpolation radius increases (i.e. as 

samples further away from the point of interest are included)


at some radius the variance will no longer increase as we have reached 

the overall variance, which is called the “regional variance” 

including values beyond the regional variance radius is pointless as 
such samples do not contain any information on the value at the 
point of interest

Interpolation radius Interpolation radius
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Interpolation radius
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Semivariance and semivariograms

This concept is semivariance and is shown in a semivariogram
semivariance:    the variance between samples a specified interval 


  or distance apart

with:  γ = semivariance for interval h

  n = total number of samples

  zi = value at position i

γh =  
(zi - zi+h)2Σ
2(n - h)

as the interval increases, the semivariance will approach the total variance 
of the data set, so it is a spatially controlled partial variance of the data

as h increases, the relatedness of the samples decreases and the variance 
will therefore increase:

Semivariance and semivariograms

plotting the semivariance against h: semivriogram
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no relation with 
distance: random

gradual changes in 
concentration

continuous variation 
with distance: trend

Semivariance and semivariograms
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properties of a semivariogram :

range

sill

range

drift

the range is the interval within which there is similarity between the samples



Semivariance and semivariograms

Semivariograms provide our maximum radius criterion: only 
samples that fall within the range are included in interpolation

before we continue, a few notes:

‣ most semivariagrams have an apparent cut-off at zero distance that has a 
semivariance ≠ 0. This is called the nugget effect and is caused by sample 
heterogeneity (= field duplicate variance)

‣ semivariograms have to be determined for each variable as each has its own 
range: interpolation has to be performed separately as well

‣ semivariograms are generally different for different spatial directions (N, SW, etc). 
Such anisotropy can point to an underlying geological phenomenon such as 
layering or a fault control on conc. This can be corrected for either manually by 
stretching the coordinate system perpendicular to the main axis, or automatically 
by kriging software

Nugget effect in semi-variograms
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There is always some uncer-
tainty at a given sample site, 
which you could quantify by 
taking field duplicates. 


This sample site variance is 
the “nugget” in a semivario-
gram (in essence the variance 
at zero distance)


Every element will have such 
a nugget, but the effect is 
strongest for elements that 
are heterogeneously distri-
buted, such as gold present 
as nuggets in a sediment 
because we use mean + var

range

sill

nugget

Using semivariogram information: kriging

The interpolation technique that employs the range information 
as obtained from semivariograms is called kriging

in kriging, only samples that are within the range are used to determine 
the value at a given intermediate position and the weighing for each 
sample is derived from its associated semivariance


        A (xi,yi) = wt1 * A (x1,y1) + wt2 * A (x2,y2) + wt3 * A (x3,y3) + ...


as an added bonus this also gives us the variance associated with 
each interpolated value (the uncertainty), so we can immediately see 
where our interpolations are reliable and where they are not


because weights are based on the semivariance, obvious trends in the 
data should be removed as this leads to a continuous rise in the semi-
variance: can be done by first subtracting a trend surface

Estimate of uncertainty for each interpolated value

source: wikipedia.org



Uncertainty in block kriging of grades
Kriging is commonly applied to estimate the grade of blocks in open pit mining 
using a sample grid or the grade of adjacent blocks (or both). 


In such cases it is invaluable to know the uncertainty on the grade estimate

Back to our example
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Results of different interpolation techniques:
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And now using kriging as the interpolation method
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Results of kriging on this data set:

Some data are not suited to interpolation/kriging

There is a strong tendency to directly start with the most complex or fancy 
technique, such as kriging. However, kriging is not always appropriate !

raw concentrations plotted optimized kriging map



Kriging and sample coverage
Kriging works best when you have a high sample density and a more or less 
uniform distribution of data over the sample are. If not ➛ get artefacts

Areas without samples need to be blanketed out, not just removed afterwards

Geotop Short Course in Data Analysis and Geostatistics�
Short course summary

Eigenvector techniques - highlights

Techniques to locate the principle directions in your dataset
‣  useful to reduce the dimensionality of a dataset to its principle directions - 
greatly facilitates the interpretation

‣  the principle directions generally represent the underlying processes that 
control the data distribution - process identification

some practicalities:

two main techniques: principle component analysis and factor analysis - very 


similar, but PCA is a true data transformation (no loss of info) whereas FA 
retains only a subset of the variance


eigenvector techniques are basically a clustering of the variables based on their 

correlation/covariance similarity - high cor/cov: same trend, low cor/cov: 
different trend


have to carefully decide the number of significant factors - use the scree plot. If 

a more appropriate interpretation can be made using more or less factors 
than the number suggested by the scree plot - no problem

Spatial analysis - highlights

Spatial analysis of data is a great technique to:
‣  interact with your data, spot trends, correlations, outliers, clustering, and 
thereby suggests ways to analyze and interpret your data

‣  link your data to all kinds of other spatial information, such as position of 
roads, towns, rivers, ice cover, topography, geology, soil type, vegetation, etc

‣  disseminate your results to others: easy to understand

some practicalities:

advanced methods need a dedicated sampling design, otherwise stick to the 


more basic techniques such as bubble plots

when a dense uniform sampling grid is available, best results for Earth Science 


datasets are generally obtained by using kriging and semivariance

trend surfaces are a further powerful technique to interpret spatial data and de-


trending should be performed before kriging



Clustering techniques - highlights

Clustering of data is used to:
‣  split up multi-modal datasets so they can be analyzed with other statistical 
techniques, such as t-tests and ANOVA

‣  look for homogeneous groups in the data, which can tell you something 
about the main separating processes acting upon the data

‣  classify samples: assign samples to pre-determined groups

some practicalities:

many varieties of separation techniques: DFA, hierarchical clustering, fixed or 


sought cluster means, partitioning clustering using hard and fuzzy rules, etc

fuzzy clustering is the most powerful for geochemical datasets as it gives the 


partial membership to each cluster, thereby being able to cope with 
intermediate samples


as in eigenvector techniques, the main difficulty is in deciding the number of 

clusters. A variety of parameters can help you make that decision, but feel 
free to deviate (e.g. outliers commonly get their own cluster)

Regression analysis - highlights

Regression analysis is a technique:
‣  that allows you to fit a quantitative model to data that can subsequently be 
used in mathematical models. Also allows for inter- and extrapolation

‣  that allows you to determine whether a variable explains a significant part of 
the variance in the dataset: in other words, whether it belongs in the model

‣  test what the best model is to describe your data (linear, quadratic, logarith-
mic, exponential, multiple linear, etc)

some practicalities:

the best regression fit has maximum variance along the regression line and 


minimal on either side. The ratio of explained over total variance is R2. 

important assumptions in regression analysis that have to be met: always check 


normality of residuals, multi-collinearity, significance of coefficients, etc

Testing - highlights

Statistical testing:
‣  test the validity of a hypothesis at a specified confidence interval α

‣  rejection of the null-hypothesis is the stronger results: choose your 
hypotheses carefully

‣  all techniques work in exactly the same way: each test has a probability 
distribution: exceed the critical probability (α) and the hypothesis is rejected, 
otherwise: no reason to reject the null hypothesis

‣ crucial to keep the errors in mind when testing: type I - known, specified as 
the confidence interval in testing results; type II - unknown

‣  many statistical tests, optimized for specific hypotheses, data distributions, 
etc (e.g. t-test, Z-test, F-test, ANOVA, Kolmogorov-Smirnov, χ2-test)

‣  most commonly used:  t-test/ANOVA - determine whether a number of 


                                      groups/clusters are significantly  

                                      different from each other

             χ2-test - determine whether two data distributions or 

                           curves are significantly different

Basic techniques - highlights

data description:

correlation:

error propagation:

central value: mean, median, mode

measures of spread: range, stdev, IQR, percentile, accuracy vs. precision

normal versus robust techniques

type of distribution: normal, lognormal, multi-modal, outliers

data visualization: histograms, boxplots, scatter diagrams, violin plots, etc

correlation between variables expressed by a Pearson or Spearman correlation 
coefficient. To quickly assess correlations for a complex data matrix: cor matrix

technique to propagate the uncertainty on the measured values to the property 
you are deriving. Easiest way to do this: split up the equation to its most basic 
operators: add - subtract - multiply - divide



The end....

garbage in = garbage out


most scientists use statistics as the drunkard uses a 
lamppost; for support rather than illumination

If you take nothing else away from this course,  
remember these:


