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Time series analysis

Time is a critical variable in geology and a whole subfield of geostatistics
is devoted to it: time series analysis

aims: detect trends and systematics with time for process identification
and to predict the future

time is only rarely absolute, in most cases we have only qualitative information on
time (strat sequence, growth zoning, younger-older)

Time series analysis - Markov chain

Systematics in the lithology changes for a log (time is qualitative)
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are these sequences significant or pure chance ?




Time series analysis - Markov chain

Systematics in the lithology changes for a log (time is qualitative)

strat log

transition matrix

transition prob matrix

to

sh s c | total
12 38 0 1/8 1
0 47 37 0 1

23 0 o 13 1

1 0 0 0 1

to
sh s c | total
sh | 4 3 0 1 8 sh
gl s 0 4 3 0 7 gl s
§ c 2 o0 0 1 3 § c
| 2 0 0 0 2 |
total 8 7 3 2 20 total

Time series analysis - Markov chain

Systematics in the lithology changes for a log (time is qualitative)

strat log

transition matrix

from

transition prob matrix

from

total

sh |8/20 7/20 3/20 2/20 1
s 8/20 7/20 3/20 2/20 1
c 8/20 7/20 3/20 2/20 1

| |8/20 7/20 3/20 2/20 1

to to
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sh 4 3 0 1 8 sh |1/2 38 0 1/8 1
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(c] 2 0 0 1 3 ._g c 2/3 0 o 13 1
I 2 0 0 0 2 | 1 0 0 0 1
total 8 7 3 2 20 total
to
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transition
prob matrix

Time series analysis - Markov chain

Systematics in the lithology changes for a log (time is qualitative)

strat log transition matrix random transition matrix
to to
sh s e | total sh s C | total
sh 4 3 0 1 8 sh 32 28 12 08 8
E s 0 4 3 0 7 E s | 28 245 105 07 7
o S
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| 2 0 0 0 2 I 08 07 03 02 2
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to
sh s c | total
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transition X g c |8/20 7/20 3/20 2/20 1
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total
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Time series analysis - Markov chain

Systematics in the lithology changes for a log (time is qualitative)

strat log

transition matrix

to

from

sh s c | total

4 3 0 1 8
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random transition matrix

sh s c | total
sh 1 32 28 12 08 8

s |28 245 105 07 7

from

c 12 105 045 03 3

| 08 07 03 02 2

expected

X2cac= 19.23
df = (c-1)-1) = 9

X20.05:9 = 16.92 : calc exceed critical : not random




same number of eruptions through
time

Time series analysis - randomMNESS Of v s wom secron

time?

The past is the key to the future: but only if the past was non-random !

+*1Etna eruptions VEI 2

35
3.0
254
20
15
1.0
0.5

0.0+
16!

Frequency

periode 1890 - 2015: 44 eruptions obs exp

split this up in 25 year time periods: 1890 - 1915: 11 8.8 X2calc = 6.23
1915 - 1940: 5 8.8
1940 - 1965: 8 8.8 X20.05:4 = 9.488

1965 -1990: 14 8.8
1990-2015: 6 8.8

X

df.=class-1=5-1=4

Time series analysis - randomness of events

The past is the key to the future: but only if the past was non-random !

+#1Etna eruptions VEI 2

—— 1 Regular

Random

Clustered

Trend

Pattern

Time

Time series analysis - randomness of events

The past is the key to the future: but only if the past was non-random !

=] Etna eruptions VEI 2

periode 1890 - 2015: 44 eruptions, 43 intervals

time between eruptions:  <2: 19 we will calculate the expected
2-4: 14 random occurrence from the
5-7: 5 Poisson distribution (2.3.7.3):
8-10: 5

Ej=T:-etvVD- (n/T)i/j!
where n = total no. events =44, T =
no. intervals = 43

obs

Time series analysis - randomness of events

The past is the key to the future: but only if the past was non-random !

4_2: Etna eruptions VEI 2 suggests a random spacing in time
359
3.0
25
2,01
154
1.04
05

0.0+
1650

what about trends?

Frequency

periode 1890 - 2015: 44 eruptions, 43 intervals

time between eruptions:  <2: 19 15.46 15.46 X2aic = 2.74
2-4: 14 15.81 15.81 df = class -1 = 3
5-7: 5 8.09 8.09 o
8-10: 5 2.76 3.61 X20.05:3=7.815
11-18: 0.71
14-16: 0.14

obs exp exp x




Time series analysis - randomness of events

The paSt is the key to the future: but ¢ e occurence of an enpion has no

info on occurrence of another

non-random !

*1Etna eruptions VEI 2

Frequency

1850 1900 1950
18- event number does not have a normal
16 distribution: robust test
14
5 129 )
3 0] . . Spearman r analysis: Ho = no trend
. .
£ 8 . Ha = trend
. .
N
. . .
44 o o .
2 ) ‘e " e o r =0.07, Puncorr = 0.65
e L L] L . . .

event no.

Time series analysis - systematics with time

Time series data consists of noise + signal: smoothing allows for noise
to be reduced by assuming its frequency to be different
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Time series analysis - systematics with time

Assessing periodicity in your time series: auto-correlation
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Time series analysis - systematics with time

Analysing multiple variables against time: cross-correlation
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Time series analysis - systematics with time

Analysing multiple variables against time: cross-correlogram
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Time series analysis - periodicity
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Analysing variables against time: periodogram
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Geotop Short Course in Data Analysis and Geostatistics
Regression analysis and curve fitting

Regression pitfalls

Regression is probably the most common statistical analysis performed on data, but
few people fully understand the method

B s
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Regression pitfalls limits on slope

Regression is probably the most common statistical analysis performed on data, but
few people fully understand the method
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the slope is always positive —> there the slope is both positive and
is always a positive relation between negative —> there can be both a
the variables positive and negative correlation

Regression analysis

The conc. of a heavy metal in soils from all over Europe:

determine the natural background so you can set pollution criteria

120 — 71— . . . . .
mean = 25 nice continuous distribution of the data;
1001 0V =3 can describe it with a mean/median and
go{ N =700 stdev/IQR
60
40 conclusion;
2 spread is large in the data, but there are
no clear signs of pollution
. T gnsorp

20 42 64 86 108 130 152 174

however; some samples were from heavily polluted sites, so why don’t they
jump out in the total data set?

unlikely to be one background value: will depend on soil type, composition etc




Regression analysis

The content of a heavy metal in soils from all over Europe:

organic matter content completely controls the conc of this heavy metal:

any soil with high organic matter content
will have a natural enrichment

pollution will be an enrichment beyond
that caused by organic matter

ppm Cu in soil
>
>
>
>
S
>

as but how can we correct for the organic
matter contribution ?

% organic matter

need to quantify the relation between organic matter and heavy metal content

allows organic matter influence to be subtracted from the bulk composition
s0 soils can be directly compared

to quantify this relation: use regression analysis

Cu

Regression analysis- linear model

conduct a regression analysis on this data set:
Identify the dependent and the independent variable

30 A 65
) Y=0b,+ b.X il
& sof
20 45+
15 407
35
30 35 40 450'975:“‘9{55 60 65 70 10 15 20 ‘2:] 30 35

Cu = 0.455*Org. Org. Matter =

Matter + 3.64 1.96*Cu + 1.18

_ X=(Y-bo)/b1= Org. Matter =

Y =botbiX -bo/b1 + 1/b1Y 2.20'Cu- 8

Regression analysis- linear model

conduct a regression analysis on this data set:

Y=b,+ b.X

where Y= estimated value of Y at X;
b,= the intercept (Cu when no organics)
b, = the slope of the data array

ppm Cu in soil

% organic matter X (% organic matter) is the independent variable,

whereas Y (Cu content) is the dependent variable
as it is a function of X

this regression equation is an estimate of the population equivalent:

Yi=Bo + B1 Xi + €i

where €i is an uncertainty term related to the variance in the data

Regression analysis - assumptions

assumptions (or requirements) for linear regression analysis:

€ - has to be normally distributed with a mean of 0 and variance oe2

equal distribution of points on either side of the regression curve as well as along
the curve (throughout the data range)

i.e. the deviation from a perfect fit and should therefore be centred on your fit

for every value of X, the corresponding values of Y are normally distributed

if this is not the case: have to switch to a robust regression technique
e.g. saturation level regression

uy for every X has to lie on a linear trend with o¢2 variance around this
trend (when fitting a linear trend)

i.e. the py values should correctly describe the trend that you are modeling




Regression analysis - assumptions

assumptions (or requirements) for linear regression analysis:

py for every X has to lie on a linear trend with o2 variance around this
trend (when fitting a linear trend)

i.e. the py values should correctly describe the trend that you are modeling

5.1

4.1

T T T T T
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Regression analysis - testing of the assumptions

assumptions (or requirements) for linear regression analysis that
need to be tested:

1. that the regression coefficients and the intercept are meaningful
(if not, the non-significant ones need to be removed from the
regression model)

2. that the overall model is significant (using an ANOVA analysis,
R2 is not sufficient)

3. that the assumptions are met (residual distribution)

4. that the model is not overly dependent on a single datapoint or
variable; i.e. an outlier (Variance Inflation Factor)

Regression analysis - ANOVA

Let’s have a look at the data uncertainties in regression analysis

original data have associated uncertainty:
0x2 and 0y, however 0,2 is not independent:

0y2 = B120x2 + 02

where the first part describes the uncertainty explained by the
regression and the second part the uncertainty that is not

The total deviation from the mean (i.e. the sum of squares) is of course
preserved, so;

SSror = SSx+SSy = SSpixpo + SSe = SSy + SSe

where the latter two represent the deviation along the regression
curve and the deviation around the regression fit respectively

Regression analysis - ANOVA

We can use the sums of squares to determine goodness-of-fit;
When SS;>>SS: you have a good regression fit as most of the

variance resides in the regression and there is only minimal variance
remaining around this curve

When SSj < SS: you have a poor regression fit as the deviation from
your fit is equal or even larger than that along your fit

n

SS; = Z ()} B Y)z the deviation between the predicted
—~ i and the mean of Y = SSgegression
i=
n

SS. = Z ()9 _ _)2 the deviation between the predicted
o and real value of Y = SSpeviation




Regression analysis - ANOVA

The ratio between SSgr and SSror is an indicator for the
goodness-of-fit; the coefficient of determination R2

SSr
SStor

Re =

R2 = 1: perfect regression fit as regression describes the full
variance in the data (SSg = SStor)

R2 =~ 0: no fit as the regression part of the variance is negligible
(SSRr << SSto71)

Note: R #r
both relate the variance along a trend to the total variance in your data, but they are based on
different assumption and have different requirements on the input data !

Regression analysis - ANOVA

Distribution of variance in regression analysis

var source sum of squares d.f. variance
regression SSr 1 MSr
deviation SSp n-2 MSp
total SSror n-1

MS = mean square

what are the d.f. for each contribution?

deviation: need [1and Bo coefficients to determine the predicted
value of Y, which you need for SSp, so the d.f.=n-2

regression: only 1 degree of freedom as the slope fixes the relation
between the variables; can only shift curve up or down

total d.f.: essentially the deviation in Y; from the mean of Y, so n - 1

Regression analysis - ANOVA

var source sum of squares d.f. variance
regression SSr 1 MSr
deviation SSp n-2 MSp
total SSror n-1

MS = mean square

variance = sum of squares divided by the degrees of freedom:
s2p = MSp = SSp / n-2 and s2r = MSr = SSr/ 1

This can be used to determine whether the regression fit is significant
following our earlier ANOVA approach:

MSRr has to be significantly larger than MSp at alpha:
F-test on the ratio of MSgr and MSp  (Ho; MSRr = MSp)

Regression analysis

What if the fit is not significant ?

1. there is no correlation between the variables
plot the data in a scatter diagram and check

2. the correlation is weak and not significant due to lack of data
obtain more data or accept a larger value of alpha

3. the data are correlated, but the correlation is not linear
repeat the same exercise using a more appropriate curve:
quadratic: Y = b1X + b2X2 + bo
exponential: Y = bo EXP(b1X)
reciprocal: Y =1/ (b1X + bo)
multiple linear: Y = b1X1 + b2Xz + baX3 + bo




Linear regression with the statistics package PAST

data

A B
100 96
143 54
169 91
286 139
446 171
611 150
659 229
782 389
920 586
1000 762
1011 922
910 773
947 661
941 544
803 458
707 293
691 166
510 187
377 123
191 128
68 59
867 501

linear fit
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Linear regression with the statistics package PAST

data

501

linear fit - statistics

Ordinary Least Squares Regression: A-B

Slope a:
Intercept b:

0.72275 Std. error a: 0.088514
-91.552 Std. error b: 59.84

95% bootstrapped confidence intervals (N=1999):

Slope a: (0.53344, 0.89646)
Intercept b: (-162.44, 51.446)
Correlation:

r 0.87707

re; 0.76925

t 8.1654

p (uncorr.): 8.4854E-08

Permutation p:

0.0001

Linear regression with the statistics package PAST

data

A B
100 96
143 54
169 91
286 139
446 171
611 150
659 229
782 389
920 586
1000 762
1011 922
910 773
947 661
941 544
803 458
707 293
691 166
510 187
377 123
191 128
68 59
867 501

linear fit: are the coefficients significant ?

Ordinary Least Squares Regression: A-B

0.72275 Std. error a: 0.088514
-91.552 Std. error b: 59.84

Slope a:
Intercept b:

95% bootstrapped confidence intervals (N=1999):

Slope a: (0.53344, 0.89646)
Intercept b: (-162.44, 51.446)

Ho; a=0,b=0 taar =(a-0)/stdev
Ha; a#0,b#0 taat = (b -0)/stdev

t (slope) cac = 8.16 > tqar=2.08 ->reject Ho
t (intercept) cac = -1.59 < tqdf=-2.08 ->accept Ho

Linear

data

100

96

91

139
171
150
229
389
586
762
922
773
661

458
293
166
187
123
128

501

regression with the statistics package PAST

Regress.
-19.278
1.8
30.592
115.15
230.79
350.05
384.74
473.63
573.37
631.19
639.14
566.15
592.89
588.55
488.81
419.43
407.86
277.05
180.92
46.492
-42.406
535.07

Residual
115.28
422
60.408
23.847
-59.792
-200.05
-155.74
-84.635
12.627
130.81
282.86
206.85
68.112
-44.551
-30.812
-126.43
-241.86
-90.048
-57.923
81.508
101.41
-34.068

linear fit: is it significant ?
n
~ 2
$So= ) (¥~ ;)" = SShescun

i=1
n

SSr = Z (2 - ?)2 mean Y = 340

i=1

SStor = SSr + SSp R2 =

SSp 345975
SSr 1153347
SStor 1499321

R2=0.77




Linear regression with the statistics package PAST

var source sum of squares d.f. variance
regression SSr = 1153347 1 s2r = 1153347
deviation SSp = 345975 n-2=20 s2p = 17299
total SSror = 1499321 n-1=21

s?p=SSp/n-2 and s2r=SSgr/1

For the regression model to be meaningful, s2r has to be significantly larger
than s2p at your chosen confidence level:

F-test on the ratio of s2r and s2p  (Ho; s2r = s2p)

Fealc = 66.67 > Fo.05,1,20 = 4.35 The model is meaningful

Linear regression with PAST

F-ratio is sufficiently high that we can reject the Ho hypothesis:

the regression fit explains a significant part of the total variance and is
therefore meaningful

. 240 residuals

Residual
o
0

S B g S s
-300
0 120 240 360 480 600 720 840 960 0 120 240 360 480 600 720 840 960
A A

Appropriate fit for this dataset

Even though the linear regression fit is significant, it is not
necessarily the most appropriate fit for the data

linear fit 3rd polynomial fit
at0 ¢ 900 ¢
R2=0.77 .o o sod RZ2=0.94
7201
6004 700
480 6007
LI @ 5004
240 400
120 300
0- 200
o_® o
-120+ 1007 o5
T T T T T T T T T 0= T T T T T T T T
0 120 240 360 480 600 720 840 960 0 120 240 360 480 600 720 840 960
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Cubic regression with PAST

Polynomial regression, order 3 . .
’ 1604 residuals

chi2: 77520 120

AkaikeICc: 77531

Akaike IC: 77528 8071 .

R2: 0.9483 40 . o

F 110.05 L o *

. - o 0 ° . .

p: 9.0859E-12 . .

L]
404 .

ao: 15.4322 804 L

a1: 0.803255 L

a: -0.0021042 120 .

ag: 2.11066E-06 -160

0 =T T T T T T T T T
100 200 300 400 500 600 700 800 900
A

Equation: 2.111E-06x3-0.002104x2+0.8033x+15.43

F-ratio is higher than before: a more significant model for the data.

Chance of obtaining this result purely by chance: 1 / 100000000000




Regression and curve fitting in PAST
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Multiple linear regression with PAST

the dependent is a linear combination of many independents:

the composition of a soil will be the sum of the compositions of its
constituents multiplied by their respective fraction in the soil:

clay quartz plag micas organic
Cu 25 0 5 120 2500
Pb 16 0.1 50 260 1200
Ni 8 0 3 14 890
Co 2 0 1 4 651
Zn 40 0.5 23 64 2200
Zr 8 4 16 4 56
Ti 120 8 8 140 80

CU(SO”) = Xclay*25 + thz*o + Xplag*s + Xmicas*120 + Xorganic*2500

Multiple linear regression with PAST

can derive the phase fractions by multiple linear regression

element [clay [quartz plag [micas  [organic [C7 [soil [weight |
1 |[Cu 25 0.2 5 120 2500 900 0.02
2 |Pb 16 0.1 126 260 1200 470 0.04
3 |Ni 8 0.1 3 14 890 300 0.01
4 Co 2 0.2 1 4 651 200 0.06
5 |in 40 1 23 64 2200 800 0.08
6 |Zr 8 4 16 4 56 25 0.04
7 Ti 120 8 8 120 80 90 0.02
8 Rb B0 0.1 12 250 2 B0 0.01
9 |Sr 12 0 451 26 4 34 0.09
10 Ba 4 0 26 154 36 38 0.06
1 U 12 2 3 19 58 28 0.05
12 |Th 5 05 1 7 56 20 0.0
13 |Sc 264 0 &) 45 17 106 0.05
14 v 4 0.2 2 26 298 110 0.04
15 |Cr 8 0. 3 56 300 120 0.07

independents dependent

Multiple linear regression with PAST

can derive the phase fractions by multiple linear regression

Pearson correlation coefficient matrix

soil clay quartz plag micas organics
soil -0.07093 -0.1874 -0.10406 0.22475 0.9935
clay -0.07093 0.19781 -0.1328 0.09296 -0.16353
quartz -0.1874 0.19781 -0.16519 -0.047386  -0.20439
plag -0.10406 -0.1328 -0.16519 0.011717 -0.11858
micas 0.22475 0.09296 -0.047386  0.011717 0.16225
organics 0.9935 -0.16353 -0.20439 -0.11858 0.16225

potential problem: organics strongly dominant control on soil composition




Multiple linear regression with PAST

can derive the phase fractions by multiple linear regression

OB Numbers |

Coeff.
Constant -7.0992
clay 0.37006
quartz 0.91549
plag 0.067332
micas 0.17703
organics 0.3499
regression
coefficients

The regression model:

Std.err. t <]
4.7446 -1.4963 0.1688
0.040004 9.2507 6.8155E-06
1.2806 0.71487 0.49282
0.023663 2.8455 0.01923
0.031772 5.5718 0.00034656
0.0034672  100.92 4.6722E-15
t-test
on coeff.

RA2

0.0050311
0.035118
0.010829
0.050512
0.98703

contribution
to R2

probability that
coefficient is 0

Multiple linear regression with PAST

can derive the phase fractions by multiple linear regression

The regression model:

Dependent variable:

N:
Multiple R:
Multiple R2:

Multiple A2 adj.

ANOVA
=
df1, df2:
p:

soil

15
0.99961
0.99921

0.99877

very high
2278.7 gca.cg
5,9

1.1272E-13

Multiple linear regression with NCSS

Regression Coefficient Section

Independent Regression Standard Lower Upper
Variable Coefficient Error 95% C.L. 95% C.L.
Intercept -7.9852 55681 -205812 46108
clay 03746 00414 02810 0.4652
micas 0.1830 00410 00902 02757
organic 03511 00038 03425 0.3596
plag 00687 00193 00237 0.1138
guartz 1.3770 17871 -26656 54197

Note: The T-Value used to calculate these confidence limits was 2.262.

Analysis of Variance Section

Source DF R2
Intercept 1
Model 5 09991
Error &) 0.0009
Total(Adjusted) 14 10000
Regression Equation Section
Regression
Independent Coefficient
Variable bi)
Intercept -7.9852
clay 0.3746
micas 0.1830
organic 0351
plag 00687
guartz 13770

Sum of Mean
Squares Square  F-Ratio
32007 96 32007 96
4999277 9998555 1958.801
4593982 5.104425
50038.71 3574194
Standard T-Value
Error to test Prob
Sh{i)  HO:B(i)=0 Level
55681 -1.434 0.1854
00414 9.050 0.0000
00410 4.461 00016
00038 92938 0.0000
00199 3.454 00072
17671 0771 0.4607

Standardized

Coefficient
0.0000
00936
00464
10024
00377
0.0081

Prob Power

Level

0.0000

Reject
HO at
5%2

No
Yes
Yes
Yes
Yes

No

(5%)

1.0000

Power
of Test

at5%
02501
1.0000
09767
1.0000
08662
0.1063

From From
PRESS Regular
Parameter Residual Residuak
Sum of Squared Residuals 1521904 1112096
Sum of |Residuals| 97 44208 66.4433
R2 09987 09934
Multicollinearity Section
Variance
Independent Inflation
Variable Factor Tolerance
clay 09857 09544
micas 08743 09445
organic 08817 08768
plag 09257 08552
guartz 09447 09193

no significant difference between
regular and PRESS R?

no significant variance inflation
(VIF < 5-10) and tolerance close to 1

residuals are normally distributed

Multiple linear regression with NCSS - checks

120

VAN

Residuals of soil

20 10 00 10 20
Expected Normals




Multiple linear regression with NCSS

00 o 0o s 100

Residuals of soil
Residuals of soil
Residuals of soil

00 2500 5000 %00 10000 00 750 1500 250 3000 00 750 1500
Presicted soil clay micas

Residuds of soilvs crganic Residuds of soilvs plag Resicuds of soilvs quartz

Residuals of soil

Residuals of soil

Residuals of soil

3000

6260 12600 18750 25000

00 1250 2500 3150 5000 00 20 4 50

orgaric

blagy

quertz

no trends between the residuals and the (in)dependent variables

very good regression fit that satisfies all the requirements for regression

Regression summary

Regression analysis allows you to define a model for your data
that is predictive (both interpolative and extrapolative)

However, have to test that the model is meaningful by testing:

1. that the regression coefficients and the intercept are meaningful
(if not, the non-significant ones need to be removed from the
regression model)

2. that the overall model is significant (using an ANOVA analysis,

R2 is not sufficient)

3. that the assumptions are met (residual distribution)

4.

that the model is not overly dependent on a single datapoint or

variable

Robust regression

Deviations from normality, such as outliers, can have a major impact on
regression coefficients and invalidate results. Unfortunately such datasets

cannot always be avoided: use robust regression

Ni in Moss [mg/kg]
50 200 500
4t
20000

5 10 20

500

Ca in C-horizon, Russia [mg/kg]
2000 5000

N —— Robustline + —— Robustline
- M --- LSline o --- LSline
Y
T T T T T T T L — L —— T
5 10 20 50 100 200 2 5 10 20 50 200 500

Cu in Moss [mg/kg] Sr in C-horizon, Russia [mg/kg]

Robust regression - Sen slope

One type of robust regression, which is especially suited to small sets of data
is the Sen slope:

The Sen slope involves calculating the slope of each combination
of two data points, and then taking the median of these slopes as
the robust characteristic slope

slope = Ax / Ay - Sen slope
for 5 data points: 10 slopes

Sen slope = median(10 slopes)
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Robust regression - Sen slope Day 4 - topics covered g;g[gp
date shopping spending
5-Dec 35 900 * Markov chain analysis of transitions (strat. columns)
6-Dec 98 8004 LS slope: 19.6
7-Dec 45 i N .
8-Dec 50 700- Sen slope: 10.1 ® (non-)randomness in time series data
9-Dec 67
10-Dec 2 600 * Auto- and cross-correlation among time series data
11-Dec 76 g’ 500
12-Dec 83 o Priedii _ o .
SBQC gé (§ 4009 LS slope: 8.6 Periodicity in time series data -

-vec 480
15-Dec 112 30071 sen slope: 9.1 * Dependent vs. independent variables ® 50
16-Dec 144 200+ fQZ
17-Dec 12 ¢ Testing linear regression models 0
187Dec 152 1m- " 0 120 240 360 480 600 720 840 960
19-Dec 100 0 ! T T * Non-linear regression .
20-Dec 185 5 10 15 20 25 9 =
21-Dec 208 e
22-Dec 360 Decamber * Robust regression =
23-Dec 810 be
24-Dec 250 T T T




