Lecture 6: Metamorphic facies concept

Metamorphic rock names include parts from all three effects that metamorphism can have on a rock: mineralogy, composition and fabric

composition terms: meta-pelite; meta-granite; meta-basalt add mineralogy: garnet-staurolite meta-pelite; hornblende-plagioclase meta-basalt add fabric name: slate; gneiss; granofels

final name includes all three (if known):

- garnet-staurolite meta-pelite schist
- hornblende-plagioclase meta-basaltic gneiss
- garnet-pyroxene migmatite
- plagioclase augen mylonite

Now need a final component: metamorphic grade

Ideally the name of a metamorphic rock gives a (rough) indication of its overall grade, and these grade-related names can be established in the field

Low-grade metamorphism

Estimators of grade: mineral zones

Because minerals have a limited stability in pressure and temperature, their presence or absence can be used as an indicator of the general P-T conditions in a rock

However, this doesn't only depend on P and T - bulk composition also pays a role: you cannot make a garnet in a pure quartzite or marble

Λ

Metamorphic facies: minerals depend on compo

Metamorphic facies: boundaries are gradational

7

Metamorphic facies: minerals for different protoliths

	Ultramafic rocks	Marbles	Metapelites	Metamarls	Metabasalts	Metagranitiods	Fluids
Protolith	Ol+Opx±Cpx±Spl	Cal+Dol+Qtz+ Kfs±Chl, ±Ab,±"clay"	"clay"+Qtz±Ab±Kfs	Cal+"clay"	Pl+Cpx±Opx±Qtz	Pl+Kfs+Qtz±Hbl± Bt ±Ol±Cpx±Opx	
Subgreenschist	Ol+Opx±Cpx±Grt chrysotil+Brc+Act chrysotil+Tlc+Act± Chl	Cal+Dol+Qtz+ Kfs+Chl+Ms	Kln(Prl)+Chl+ Illite+Qtz	Cal+Kln(Prl)+ Chl+Illite+Qtz	Pl+Cpx±Opx±Ol Zeolites	"clay", illite, zeolites Prh, Stilp, Chl+Kfs	H ₂ O-CH
					Pmp+Prh+Chl+		
Greenschist	Atg+Brc+Di+Chl	Cal+Dol+Qtz+Chl	Prl(Als)+Chl+Ms± Pg+Cld, +Bt, +Grt	Cal+Qtz+Mrg+ Chl+Ms±Ep	Ab+Chl+Ep+Act± Phe, ±Bt, ±Stp	Ab+Kfs+Chl+Qtz± Bt±Act±Ep	H_2O
	Atg+Tlc+Di+Chl	Cal+Dol+Qtz+ Kfs+Ab	. 8,,			r	
Amphibolite	Atg+Fo+Di+Chl Atg+Fo+Tr+Chl	Cal+Dol+Qtz+Tlc	St+Chl+Grt+Ms	Cal+Qtz+Pl±	Pl+Hbl+Ep	Pl+Kfs+Qtz±Bt±	H ₂ O-CO
	Tlc+Fo+Tr+Chl Ath+Fo+Tr+Chl En+Fo+Tr+Chl	Cal+Dol+Tr+Phl Cal+Dol+Di+Phl Cal+Otz+Tr+Di+	St+Bt+Als+Ms St+Bt+Grt+Ms Crd+Bt+Grt+Ms	HULGILLDI	Pl+Hbl+Grt Pl+Hbl+Cpx±Bt	MSIIIO	
	En+Fo+Hbl+Spl	Phl Cal+Qtz+Di+Phl	Bt+Als+Kfs+Grt		NICONCO	OOEI	N. 0.13
Granulite	En+Fo+D1+Spl	Cal+DoI+Di+Spi	Opx+Qtz	Grt Cal+Qtz+PI+Cpx±	PI+Cpx+Grt	Opx+Qtz+Fsp± Ol±Cpx	or CO ₂
		Cal+Dol+Fo+Spl	Opx+Crd+Bt+Qtz		Pl+Cpx+Opx± Hbl±Bt	Mesoperthite	
		Cal+Qtz+Di+Spl	Opx+Als+Qtz±Spr±				
Blueschist	Atg+Fo+Di+Chl	CaCO ₃ +Dol+Qtz+ Phe	Carpholite	Cal+Gln+Ep+ Phe+Pg	Gln+Lws+Chl±Pg		CO_2
			Phe+Tlc+Grt		Gln+Ep±Grt±Pg± Cld±Tlc±Chl		
Eclogite	Atg+Fo+Di+Chl En+Fo+Di+Grt		Phe+carpholite Tlc+Ky Jd+Qtz(Coe)+Tlc+		Omp+Grt±Ky Omp+Grt±Zo±Phe	Jd+Qtz±Phe±Ky	H ₂ O-N ₂
			ку		Omp+Grt±Zo± Tlc±Cld		

Bathozones and bathograds (Carmichael 1978)

For a *given bulk rock composition*, the appearance of an indicator mineral can be a good indicator of P and/or T. Carmichael proposed six *P*-zones for the meta-pelites, allowing for a quick estimate of pressure from thin section mineral parageneses:

Bathozones and bathograds (Carmichael 1978)

From these **bathograd** reactions we can now define **bathozones** with a characteristic mineral paragenesis. Essentially this is a subdivision of the amphibolite facies valid for meta-pelitic protoliths

$5 \rightarrow 6$: $qtz + ab + ms + sil \rightarrow Kfs + ky + liq$ $4 \rightarrow 5$: $qtz + ms + st + sil \rightarrow bt + gt + ky + fl$ $3 \rightarrow 4$: and $\rightarrow ky$ or sil $2 \rightarrow 3$: $bt + gt + and + fl \rightarrow qtz + ms + st + sil$ $1 \rightarrow 2$: $Kfs + and + fl \rightarrow qtz + ms + sil$

Note that these zones are essentially all within the amphibolite facies

10

Bathozones and bathograds (Carmichael 1978) 5 km Ň 5 + Als + H₂O + Grt + Als + H2 9 Qtz + Ms Bergell + Ms 6 8 Granite Pressure (kbar) A G O 5 ò 5 4 T 3 3 2 from Bucher and Frey 2002 2 Sil 1 And Is this contact metamorphism? Pelites 400 500 600 700 11 Temperature (°C)

Metamorphic pseudosections

9

Can extent this by calculating the positions of these reactions for the exact bulk-rock composition of the sample we are looking at. This is called a **pseudosection**. It is a section through the positions of mineral reactions in P-T-X space at fixed X.

Pseudosections: dependence on bulk composition

(O₂ buffered at Ni-NiO saturated in H-O-CO₂ fluid (X_{CO} = 0.15)

dol q ilm

amp pl gt cpx ilm q

Overlapping pseudosection fields

