
Lecture 11: Mineral reactions and petrogenetic grids
Mineral reactions involve both continuous and discontinuous reactions. Continuous 

reactions depend on composition (e.g. XMg) and are a field when plotted in P-T space. 
Discontinuous reactions are a line in P-T space and make good field isograds. 
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Continuous versus discontinuous reactions
Discontinuous reactions are reactions where one paragenesis changes to another: 
these are lines in P-T-a(H2O) space: good field isograds


Continuous reactions are reactions where the paragenesis remains the same, but the 
composition of the phases changes: they are fields in P-T space
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Continuous versus discontinuous reactions
Discontinuous reactions are reactions where one paragenesis changes to another: 
these are lines in P-T-a(H2O) space: good field isograds


Continuous reactions are reactions where the paragenesis remains the same, but the 
composition of the phases changes: they are fields in P-T space

st-in chl-out

The onset and completion of a continuous reaction depends on the bulk composition


When you fix the bulk composition (pseudosection), these have a fixed position in P-T



Petrogenetic grids
A petrogenetic grid is a network of discontinuous reactions. It splits up P-T space into 
domains of different mineral parageneses. Continuous reactions can take place within 
a field and do not result in a change in paragenesis.
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Constructing petrogenetic grids
To construct a petrogenetic grid, we need info on the slopes of the reactions and on 
the arrangement of the reactions around their intersections: thermodynamics and 
Schreinemaker’s rules

For a reaction A + B = C + D, the  ∆Gr = ∆Hr - T∙∆Sr + P∙∆Vr

Using the cyclic rule for partial derivatives:
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Clapeyron reaction slopes
The Clapeyron equation is very useful to find the slope of the reaction, but it does not 
tell you the position of the reaction in P-T space, nor what minerals reside on the high 
P or the high T side of the reaction
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=
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ΔVr

ΔHr sill → ky = -7.2 kJ mol-1


ΔHr and → sill = +2.9 kJ mol-1


ΔHr and → ky = -4.3 kJ mol-1

ΔVr sill → ky = -0.58 J bar-1 mol-1


ΔVr and → sill = -0.16 J bar-1 mol-1


ΔVr and → ky = -0.74 J bar-1 mol-1
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ΔSr sill → ky = -12 J K-1 mol-1


ΔSr and → sill = +2.8 J K-1 mol-1


ΔSr and → ky = -9.2 J K-1 mol-1
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ΔSr sill → ky = -12 J K-1 mol-1


ΔSr and → sill = +2.8 J K-1 mol-1


ΔSr and → ky = -9.2 J K-1 mol-1

dP/dT sill → ky = 20 bar K-1


dP/dT and → sill = -17.5 bar K-1


dP/dT and → ky = 12.4 bar K-1
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Reaction equations are written with the high T(K) assemblage to the right of the = sign 
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∆H = -2593 kJ mol-1

V =  4.414 J bar-1

∆H = -2586 kJ mol-1

V =  4.986 J bar-1

∆H = -2589 kJ mol-1

V =  5.153 J bar-1
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