Lecture 11: Mineral reactions and petrogenetic grids

Mineral reactions involve both continuous and discontinuous reactions. Continuous
reactions depend on composition (e.g. Xmg) and are a field when plotted in P-T space.
Discontinuous reactions are a line in P-T space and make good field isograds.
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Continuous versus discontinuous reactions

Discontinuous reactions are reactions where one paragenesis changes to another:
these are lines in P-T-a(H20) space: good field isograds

Continuous reactions are reactions where the paragenesis remains the same, but the
composition of the phases changes: they are fields in P-T space
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The onset and completion of a continuous reaction depends on the bulk composition

When you fix the bulk composition (pseudosection), these have a fixed position in P-T



Petrogenetic grids

A petrogenetic grid is a network of discontinuous reactions. It splits up P-T space into
domains of different mineral parageneses. Continuous reactions can take place within
a field and do not result in a change in paragenesis.
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Constructing petrogenetic grids

To construct a petrogenetic grid, we need info on the slopes of the reactions and on
the arrangement of the reactions around their intersections: thermodynamics and

Schreinemaker’s rules

For areaction A + B =C + D, the AG, = AH, - T-AS, + P-AV,

Using the cyclic rule for partial derivatives:

<aAG><aP><aT> 1
dT /. \oAG/, \ 3P /,,
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< oP > AS:
Clapeyron reaction slopes T / AV,

The Clapeyron equation is very useful to find the slope of the reaction, but it does not
tell you the position of the reaction in P-T space, nor what minerals reside on the high
P or the high T side of the reaction

AH; sill = ky = -7.2 kJ mol-
AH; and — sill = +2.9 kJ mol-
AH; and = ky = -4.3 kJ mol-1

AS; sill = ky =-12 J K-T mol-
AS; and — sill = +2.8 J K-1 mol-
ASy and — ky =-9.2 J KT mol-

AV, sill = ky = -0.58 J bar-1 mol-
AV, and — sill =-0.16 J bar-1 mol-
AV, and — ky =-0.74 J bar-!" mol-
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The Clapeyron equation is very useful to find the slope of the reaction, but it does not
tell you the position of the reaction in P-T space, nor what minerals reside on the high
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