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Principles of Chemical Kinetics
Thermodynamics (or the free energy of the system) tells us if the reaction is 
energetically feasible (or spontaneous) and in which direction it should proceed. 
However, … 

aA + bB  cC + dD

For example:
Cdiamond Cgraphite ΔRXGo = -2900 J/mol

Similarly,
2N2(g) + 5O2(g) + 2H2O(l)  4 NO3

- + 4H+

ΔRXGo = 28282 J/mol and ln K = - ΔRXGo /RT

K = 10-4.955 = a(H+)4 a(NO3
-)4/P(N2)2 P(O2)5

= (10-8)4 a(NO3
-)4/(0.78)2 (0.21)5

[NO3
-]eq = 7.2 x 105 M whereas the average value in the oceans is 3 x 10-5 M



What is chemical kinetics? 
It is a description of the state of a reactional system as a function of 
time or, more precisely, of the rate of chemical changes (e.g., 
concentration) of the system, dζ/dt and of the process involved.

Principles of Chemical Kinetics

Reactions that take place within a single phase (e.g., between 
molecules and ions in solution) are homogeneous reactions. 

Those that take place between species in two different phases (e.g., 
air/liquid, liquid/solid, liquid/liquid, etc.), where the reaction usually 
occurs at the interface of the two phases, are called heterogeneous 
reactions. 



Whether homogeneous or heterogeneous, reactions can be separated 
into three different steps:

1) Transport of the reacting species towards each other or to the 
interface, which is generally done through diffusion:    A     B 
(transport)
2) Chemical transformation of the reacting species:   AB  CD
and finally,
3) Transport or separation of the reaction products    C D 
which also generally occurs through diffusion.

A + B  C + D

Rate determining step

The slowest step will control the rate of the reaction. Thus, two types of 
reactions can be distinguished in natural systems: some reactions are 
transport- or diffusion-controlled whereas others are purely chemically-
controlled. 



The chemical transformation process may be composed of only one 
elementary step, but more often, it is complex and composed of a 
suite/sequence of simple reactions or elementary reactions. For 
example, let us consider the following overall reaction:

Hg2+ + 3Cl-  HgCl3-

Chemically-controlled reactions

As written, this reaction would require the simultaneous encounter or 
collision of four separate ions. The probability of the simultaneous 
encounter and reaction among four separate ions is very low. It is more 
reasonable to imagine that the reaction takes place as a stepwise 
formation of complexes with increasing chloride coordination such as:

Hg2+ + Cl- HgCl+
HgCl+ + Cl- HgCl2o

HgCl2o + Cl- HgCl3-



The mechanism of an overall chemical reaction in solution will most often 
include a combination of simple unimolecular or bimolecular (rarely 
termolecular) steps taking place:
in series (consecutive reactions)

A  B  C
CO2 + H2O  H2CO3  H+ + HCO3

-  2H+ + CO3
2-

238U  234Th  230Ra
or in parallel (concurrent reactions)

A B, A  C, A  D
40K  40Ar, 40K  40Ca

Consecutive and concurrent reactions

Each step may be reversible (i.e., appreciable rate in the forward and 
reverse directions) or irreversible. The slowest step in a sequence of 
elementary steps is rate-controlling for that sequence and determines 
the overall rate of that sequence. 



The molecularity of a reaction is defined as the number of molecules of reactant 
participating in a simple reaction constituting an elementary step.
For example, unimolecular reactions involve a single molecule:
A  B: Cdiamond  Cgraphite, 14C  14N, or
A  B + C: CaCO3  Ca2+ + CO3

2-, N2O4  2NO2

In bimolecular reactions, two identical or different species combine to give a 
product or products such as:
A + A  A2: 
A + B  AB: D + T  4He + n, I2 + I-  I3-

They are also called association reactions.

A + B  C + D: CaCO3 + H+ Ca2+ + HCO3
-

A + A  E + F
They are also called exchange reactions.

Termolecular reactions are unusual because they require that the three species 
encounter/collide at the same time to yield the products.
A + B + C  X + ...

Molecularity of a reaction



Rate Expressions for Elementary Reactions
The temporal evolution of the reaction: A  B can be represented graphically in 
the following manner:

where Nx = number of moles in the system.
If the volume of the system is constant, then 
Nx can be replaced by concentration, [x].

The average reaction rate between t1 and t2 will be given by:
Rm= ([x]2 - [x]1)/(t2 - t1) 
so that Rm will always be positive, we will write:

Rm = -Δ[x]r / Δt  = Δ[x]p / Δt  = - Δ[A] / Δ t  = Δ[B] / Δt 
In fact, what we really want to determine is the value of the rate at each point 
or time t, which is given by the slope of the tangent to the curve at a given 
point. 

R = -d[A]/dt = d[B]/dt

Nx
(or [x])

time
A

B



When the stoichiometry of the reactants and products are different, such 
as in the following reaction:

2A + B  2N

Then RB = 1/2 RA -d[B]/dt = -d[A]/2dt
and  RA = RN  -d[A]/dt = d[N]/dt
the rate of the overall reaction can be described as:
R = -d[B]/dt = -1/2 d[A]/dt = 1/2 d[N]/dt

As a general rule, for a reaction of the type: 
aA + bB + ...   nN + mM + ...
the reaction rate will be defined as:
R = -1/a d[A]/dt = -1/b d[B]/dt = 1/n d[N]/dt = 1/m d[M]/dt
where the letters in lowercase correspond to the molecularity.

Polymolecular reactions



At a constant temperature, the rate of a reaction is related to the concentration 
(probablility of encounter) of the reactants so that for:

aA + bB + ...   nN + mM + ...
R = -1/a d[A]/dt = 1/n d[N]/dt = k [A]α [B]β ... = k Π [Ci]γi

where k = the rate constant that is characteristic of the reaction at a given 
temperature whereas α and β are the partial orders of the reaction with respect 
to each reactant.
For an elementary reaction, the reaction order is also equal to the molecularity 
of the reaction, α = a and β = b which does not hold true for complex reactions 
such as most reactions occurring at interfaces.
The overall reaction order is equal to the sum of the partial orders, n = α + β + ...

Ex: H2O2(aq) + 2Fe2+ + 2H+  2Fe3+ + 2H2O(l)
R = -d[H2O2]/dt = -1/2 d[Fe2+]/dt = -1/2 d[H+]/dt 

= 1/2 d[Fe3+]/dt = 1/2 d[H2O]/dt
R = k [H2O2] [Fe2+]2 [H+]2

but experimental investigations have shown (as one could have guessed given 
the molecularity of the reaction) that it is not an elementary reaction. In fact, the 
order of the reaction can only be determined experimentally.

R = -d[H2O2]/dt = k [H2O2] [Fe2+]



For a monomolecular elementary reaction: A  B, the reaction rate is given 
by the differential equation:
R = -d[A]/dt = d[B]/dt = k[A]
where k is the first-order rate constant and has units of sec-1 (or more 
generally t-1) if the rate is expressed as M sec-1

For the bimolecular reaction: A + B  product, the rate of change of [A] is 
given by:
R = -d[A]/dt = -d[B]/dt = k [A] [B]
n = 2, α = 1 with respect to [A] and β = 1 with respect to [B] 
and k is a second-order rate constant with units M-1 sec-1 if the rate is still 
expressed as M sec-1

For the bimolecular reaction: A + A  product, the corresponding rate 
equation is:
R = -d[A]/dt = k [A]2

in which case, the rate of disappearance of A is second-order w/r to [A]

Rate constants and kinetic expressions of simple reactions



Rate constants and kinetic expressions of complex reactions
Reversible or opposite reactions
A  B
represent a combination of two elementary unimolecular reactions. The rate 
expression of this reaction at constant T is: 
R = -d[A]/dt = k1[A] - k-1[B] = d[B]/dt
at equilibrium in a closed system, at a macroscopic level: 
R = -d[A]/dt = d[B]/dt = 0   [B]/[A] = k1/k-1

The equilibrium constant for this reaction is also equal to [B]/[A] and therefore K = 
k1/k-1, the ratio of the rate constants for opposing elementary reactions is equal to 
the equilibrium constant ... 

For opposing elementary bimolecular reactions such as: 
A + B  C + D
the rate expression is described by:
R = -d[A]/dt = -d[B]/dt = k1[A][B] - k-1[C][D]
At equilibrium, 
R = d[A]/dt = d[B]/dt = d[C]/dt = d[D]/dt = 0 and k1/k-1 = ([C][D])/([A][B]) = K
(Ex: O3  O2 + O)



Rate constants and kinetic expressions of complex reactions

Consecutive opposing reactions
Consider a sequence of opposing elementary reactions 

A  + B  C and C  D
At equilibrium, each elementary reaction and the reverse reaction must occur at the 
same rate. This requirement is known as the principle of microscopic reversibility. 
Consequently,

-d[A]/dt = d[C]/dt = k1[A] [B] – k-1[C] = 0, 

And therefore [C]/([A][B]) = k1/k-1 and d[D]/dt = k2[C] – k-2[D] = 0
leading to [D]/[C] = k2/k-2 = K2 so that [D]/([A][B]) = K12 = (k1k2)/(k-1k-2)

In general, the principle of microscopic reversibility leads to the following expression:

K1n = Π (ki/k-i) for n consecutive opposing elementary processes.



Rate constants and kinetic expressions of complex reactions
Consecutive irreversible reactions
A sequence of elementary unimolecular reactions such as:
A B  C
is described kinetically by:
-d[A]/dt = k1[A], d[B]/dt = k1[A] - k2[B] and d[C]/dt = k2[B]

Concurrent or parallel reactions
A simple case is a mechanism in which a single reactant gives different products.
A  B, A  C, A  D
for which the rate equation is: -d[A]/dt = (k1 + k2 + k3)[A]
Another simple combination of unimolecular reactions involves different reactants to 
yield a single product: 
A  C, B  C
for which -d[A]/dt = k1[A], -d[B]/dt = k2[B] 
and d[C]/dt = -d[A]/dt - d[B]/dt = k1[A] + k2[B]
Unlike consecutive reactions for which the slowest reaction is the rate determining 
step, in the case of parallel reactions, the fastest reaction determines the overall rate 
of the reaction.



Rate constants and kinetic expressions of complex reactions

A combination of concurrent bimolecular and unimolecular steps to form a 
common product:
A + B  C,  A  C
yields the rate equation: d[C]/dt = k1[A][B] + k2[A]

CaSO4 + Na2Ca(SO4)2 + 2K+ + Mg2+ + SO4
2- + 2H2O 

K2MgCa2(SO4)4•2H2O + 2Na+

anhydrite + glauberite  polyhalite 
(in the sequence of precipitation during the evaporation of seawater)
2CaSO4 + 2K+ + Mg2+ + 2H2O  K2MgCa2(SO4)4•2H2O



Rate constants and kinetic expressions of complex reactions

There are essentially unlimited combinations of elementary reactions to yield 
complex mechanisms for overall reactions.
The case of opposing reactions followed by one irreversible reaction represents a 
mechanism encountered frequently in overall reactions:
A  B and B  C
O3  O2 + O and O + O3  2O2

If the opposing reactions are rapid and the second reaction is slow, a simple result 
is obtained by the approximation that d[B]/dt ~ 0 (near equilibrium).
This approximation is known as the stationary-state assumption, then:
d[B]/dt = k1[A] - k-1[B] - k2[B] = 0 and [B] = k1[A]/(k-1+ k2), 
the rate equation becomes:
d[C]/dt = k2[B] = k2 k1[A]/(k-1 + k2)
as k-1>>k2 (initial assumption), d[C]/dt = k2k1[A]/k-1 = K1k2[A]
where K1= k1/k-1 for the equilibrium between A and B (microscopic reversibility)



If a reaction is a single elementary reaction, the form of the rate expression 
observed experimentally will be precisely that expected from the 
stoichiometry of the elementary reaction 

ex: H2CO3 + H2O  HCO3- + H3O+

Although a number of important aqueous reactions, such as dissociations, 
hydrations, substitutions, and ion-pair formation reactions consist of single-
step mechanisms, the bulk of solution (homogeneous) and heterogeneous 
reactions take place by complex mechanisms, and the overall stoichiometry 
of the reaction often has no relationship with the form of the observed rate 
equation.

Rate constants and kinetic expressions of complex reactions



In a few cases, it is possible to integrate the rate equations to determine the exact 
concentration gradient with time. 

Starting with the simplest case of a unimolecular irreversible reaction such as:
A  B + ...  where -d[A]/dt = k[A]
(radioactive decay, 14C  14N + é)

Separating the variables, we obtain: -d[A]/[A] =kdt 

and integrating between concentrations of [A] to 0 in a time interval of o to ∞
∫[A] -d[A]/[A] = ∫0 kdt , 

we get: -ln [A] = kt + constant
since [A] = [A]o at t=0 
then the constant = -ln [A]o and ln [A]o/[A] = kt or [A] = [A]o e-kt

The half-time of this reaction, t1/2, which corresponds to the time after which the 
concentration of the reactant is equal to half its initial value is given by:
ln [A]o/([A]o/2) = ln 2 = kt1/2 or t1/2 = ln 2/k

Integration of kinetic expressions

o ∞



Integration of kinetic expressions

For second-order reactions such as: 
2A   B + …, -d[A]/dt = k[A]2

Integrating after separating the variables, ∫[A] -d[A]/[A]2 = ∫0 kdt ,

we get: 1/[A] = kt + constant 
since [A] = [A]0 at t = 0, constant = 1/[A]0
then 1/[A] – 1/[A]0 = kt or ([A]0 – [A])/([A][A]0) = kt
The half-life for this reaction is given by: 
t1/2 = 1/k ([A]0 – 0.5[A]0)/(0.5[A]0[A]0) = 1/k (0.5[A]0/(0.5[A]02) = 1/(k[A]0)

The half-life is inversely proportional to the initial concentration of the reactant.

0 ∞



Pseudo-order or zeroeth-order reactions

If certain species concentrations, [Xi], are kept constant over the course of the 
reaction, the factors [Xi]υi that would normally appear in the rate expression are 
constant and become incorporated in the rate constant.
For a process such as: 
A  P where the rate law is -d[A]/dt = k
in which case [A]0 – [A] = kt
The rate is constant and the half-life of the reaction is t1/2 = [A]0/(2k)

This reaction is zeroeth-order in the concentration of the reactant. In other words, the 
reaction rate is independent of that reactant. Often the case of heterogeneous 
reactions on the surface of a solid. 

The rate constant may include one or many concentration terms if the concentration 
of the reactants is constant over the course of the reaction. These are called pseudo-
order reactions.

NA

t



Pseudo-order or zeroeth-order reactions
The rate law for the reaction: A + 2B + C  P
would normally be written: -d[A]/dt = k [A] [B]2 [C]
If the concentrations [B] and [C] remain constant (through being in great excess 
or replenished by other reactions), the apparent rate law would reduce to: 
-d[A]/dt = k’ [A]  where k’ = [B]2 [C]
and the reaction is pseudo first-order with respect to [A]
CO2(aq) + H2O(l)  H2CO3(aq)
This reaction is rather sluggish compared
to the almost instantaneous dissociation 

of H2CO3 to HCO3
- and CO3

2-

-d[CO2](aq)/dt = k [CO2](aq) [H2O] = k’ [CO2](aq)

The reaction follows a first-order rate law w/r to [CO2](aq) since in most natural 
systems [H2O] is more or less constant and not affected by the reaction.
The rate constant k’ = 2.0 x 10-3 sec-1 at 0°C which makes the half-life of the 
reaction ~ 6 minutes.



Influence of temperature on the reaction rate
In the majority of cases, the rate of chemical reactions increases with the 
temperature. Arrhenius (1889) proposed that the rate constant of a reaction is
exponentially related to temperature, such that:

k = A e-β/RT

where A and β are constants for a given reaction. This relationship applies to all 
elementary reactions for which the reaction rate can be expressed by: R = k π [Xi]ni

A is a frequency factor and represents the probablility that the molecules of 
reactants will encounter (collide) each other (in the proper orientation)
β is the activation energy of the reaction or the energy necessary to bring the 
molecules of reactants to a high enough energy state following a collision so they 
can react with each other. In other words, the expression is the probablility that 
molecules of reactants will acquire the energy necessary for them to react following 
an appropriate collision.



En
er

gy Reactants 

Activated reactants 

Products

E1

E-1

ΔH 

ΔH = E1 - E-1 = heat released upon reaction

If the reaction is reversible k1 = A1e-E1/RT and k-1 = A-1 e-E-1/RT.

-Ea/RT can be obtained from the slope 
of ln k vs 1/T since ln k = ln A – Ea/R (1/T)

Influence of temperature on the reaction rate



Nucleation and crystal growth
The overall process of mineral precipitation from a supersaturated solution 
(or a cooling melt) can be divided into a number of steps 
 nucleation and growth
The interaction between ions or molecules in solution lead to the formation 
of a cluster

X + X  X2
X2 + X  X3
…
Xj-1 + X  Xj (cluster)
Xj + X  Xj+1 (nucleus)

and eventually to a nucleus from which spontaneous growth can occur. The 
nucleation process determines the size and the size distribution of crystals 
produced. Subsequently, material is deposited on these nuclei and the 
crystal grows.



Nucleation and crystal growth
Nucleation will only occur when a certain degree of supersaturation is attained 
since an activation energy barrier must be crossed before crystal growth can occur. 
The free energy of formation of a nucleus, ΔGT, consists of energy gained from 
making bonds between ions/molecules and the work required to create a surface:

ΔGT = ΔGbulk + ΔGinterf

where ΔGbulk is the free energy of the crystal and ΔGinterf is the interfacial free 
energy. For the crystal to grow, the change in free energy gained through the 
formation of the mineral must exceed the interfacial energy, otherwise the nucleus 
is unstable and will be disrupted by molecular motion before it can grow to a stable 
size.
Supersaturation is the driving force for crystal growth and, within limits, the greater 
the supersaturation state, the faster the growth rate. Therefore, there is a degree of 
supersaturation at which there is a greater probability of crystal nuclei to grow than 
being disrupted.
ΔGbulk = -n kT ln (IAP/Ksp) = -n kT ln Ω = -(4π r3)/(3v) kt ln Ω = -(4π r3)/(3v) ΔGV

where n = number of molecules or ions in the nucleus, k is Boltzman’s constant, 
(IAP/Ksp) = Ω = degree of saturation, and ΔGV is the free energy change per unit 
volume of crystal.



Nucleation and crystal growth
ΔGinterf = Aσ

where σ = interfacial energy, A = surface area = 4 πr2 for a spherical nucleus.
Hence, the free energy of the nucleus formation can be written as:

ΔGT = 4 πr2 σ + (4π r3)/3 ΔGV = 4 πr2 σ + n kT ln Ω
The equation shows that for small values of r (small # molecules or ions) and a fixed 
degree of saturation, that the free energy change increases with an increase in n (or 
j) until some critical radius (rcrit) or cluster size (jcrit) is reached, after which the change 
in free energy decreases with further increase in r or j. Once nuclei of critical size are 
formed, crystallization can occur spontaneously.
The point of maximum free energy is a state of equilibrium (metastable) where the 
solution of a given Ω can be considered just saturated w/r to crystals of the size of the 
critical nucleus. 



Metastability and particle size
Finely grained particles have a greater solubility than large crystals. As a 
consequence, small crystals are thermodynamically less stable and should 
recrystallize into larger ones (Ostwald’s Ripening). The increase in the free energy 
of the small particles results from their large interfacial energy. 
The change in the free energy ΔG involved in subdividing a coarse solid 
suspended in an aqueous solution into a finely divided one of molar surface S is 
given by:

ΔG = 2/3 σ S

where σ is the mean free surface energy (interfacial tension) of the solid-liquid 
interface. Consequently,

(dln Ksp/dS)T = 2 σ /RT  or log Ksp(S) = log Ksp(S=0) + 2/3 σ S/(2.3RT)



Metastability and particle size

σ



Nucleation and crystal growth
Theoretically, at a high supersaturation, the nucleation rate is so high that the 
precipitate formed consists mostly of extremely fine crystallites and, if the nucleus 
is smaller that one unit cell, the growing crystallite is most likely amorphous (gel-
like).
In most cases, however, nucleation results in a rapid decrease in the saturation 
state and growth on the initially formed crystals  homogeneous nucleation.



Nucleation and crystal growth

Heterogeneous nucleation, however, is the predominant process by which 
crystals form in natural waters. It occurs when the presence of foreign solids (e.g., 
dust, seed, other mineral crystallites) catalyze the nucleation process by reducing 
the energy barrier . 

If the surface of the foreign nucleus 
matches well (e.g., lattice type, atomic 
distances) with the supersaturated 
mineral, the interfacial energy between 
the two solids, σZ, is smaller than the 
interfacial energy between the mineral 
and the solution, σ, nucleation and 
growth will occur at lower 
supersaturations



Crystal Growth
The growth of crystals occurs through a number of steps:
(a) Transport of the solutes to the crystal interface
(b) the adsorption of the solutes at the surface (including surface nucleation, 

dehydration, ion-exchange, surface diffusion)
(c) incorporation of the crystal constituents into the lattice and/or removal of      

reactions products, if any.
Ignoring the latter, the rate of crystal growth may be limited either by transport, by 
surface reactions, or by a combination of both processes.



Crystal Growth
In pure transport-controlled growth, ions are attached so rapidly to the surface 
of the crystal that the concentration in solution immediately adjacent to the 
crystal is lowered to close to the equilibrium or saturation level. Growth is then 
limited by the rate at which ions can migrate to the surface by diffusion or 
advection. The rate of growth, consequently, depends upon hydrodynamic 
conditions in solution, with faster growth resulting from increased flow velocities 
(e.g., stirring rate in solution).



Crystal Growth
Conversely, for pure surface-controlled growth, attachment of solutes through 
surface reactions is so slow that concentrations adjacent to the surface of the 
growing crystal build up to values that are nearly the same as in the bulk 
solution. The rate of growth is limited by surface reactions and is not affected by 
the increased flow velocities in the solution.



Crystal Growth
As you can imagine, a number of intermediate situations between the two ideal 
conditions, where surface reactions are sufficiently fast that solute depletion 
occurs adjacent to the crystal surface, but transport prevents the concentration 
from being lowered to the saturation level.
As the rates of surface attachment are a strong function of the degree of 
supersaturation, the rate controlling step in the growth of a crystal may change 
from transport-control at high supersaturations to surface-control at low 
supersaturations.



Transport-controlled Growth
Growth via molecular diffusion constitutes a limiting situation of the transport  
growth-limited mechanisms (e.g., stagnant solution, no stirring)
The rate of growth of a crystal via molecular diffusion can be calculated theoretically 
if the crystal can be approximated to a sphere using Fick’s second law of diffusion:
δCi/δt = D (δ2Ci/δx2) = D(δ2Ci/δr2 + 2/r (δCi/δr))
which states that the rate of change of the concentration of a component i is equal 
to the second derivative of the linear concentration gradient multiplied by the 
diffusion coefficient. 
Solving this equation for a constant r and the proper boundary and initial conditions:
C(r,0) = C∞ = Cbulk
C(rc,t) = Ceq
C(∞,t) = C∞ = Cbulk

leads to δrc/δt = V D (Cbulk – Ceq)/rc
where rc is the radius of the crystal sphere, D is the molecular diffusion coefficient, V 
is the molar volume of the precipitate and Cbulk and Ceq are the solute concentrations 
in the bulk solution and at equilibrium with respect to the precipitate.
If advection becomes more efficient at transporting the crystal component to the 
surface of the growing crystal: δCi/δt = v ((δCi/δx) 



Fick’s first law of diffusion

Fick’s first law gives us the flux of the component, but does not tell us how the 
concentration of the component varies in time.



Surface-reaction controlled growth
Viewed by Atomic Force Microscopy



Surface-reaction controlled growth
Many theories of surface-reaction controlled growth were developed, but we will 
only consider two:
1) surface-nucleation controlled growth
2) dislocation-controlled growth
In the surface-nucleation controlled growth, the rate determining step is the 
nucleation of a flat, two-dimensional crystal one atom thick on an otherwise 
atomically smooth crystal.



Surface-reaction controlled growth
Surface nucleation creates atomic-sized steps on the surface where attachment of 
new ions is facilitated. As the number of direct bonds on the surface increases, 
attachment becomes energetically more attractive. Hence, holes are more 
energetically favorable than kinks and steps.
The attachment of ions at kinks creates new kinks, so the process of crystal growth 
can be visualized as the migration of kinks and steps until the surface is covered.



Surface-reaction controlled growth
In order to provide steps and kinks for the next surface layer, a new nucleus must be 
formed on the surface. The rate at which the surface nucleus forms is the rate-
determining step and can be calculated from the standard nucleation theory.
According to the mononuclear theory, the rate of growth is limited solely by surface 
nucleation. In other words, once a surface nucleus has formed, the rate of spreading 
of its steps by ion/atom attachment is so fast that the entire monoatomic crystal layer 
is formed before  another surface nucleus is created. Each atomic layer on the 
crystal is formed from only one surface nucleus. …  
A more probable situation is polynuclear growth or “birth and spread” model.



Polynuclear growth on a calcite surface



Screw dislocation or spiral growth
Growth at intersections of screw dislocations with the surface of the crystal. Screw 
dislocations are common in all crystalline substances. Crystal growth occurs along 
atomic steps provided by the outcropping rows of atoms on the surface. No 
nucleation of new steps is required since the screw dislocation outcrops are always 
present. Crystal growth at the outcrops occurs as a spiral-like rotation of the steps, 
by continuous attachment of ions/molecules, around the screw axis and can even 
be maintained at very low supersaturations (impossible according to surface 
nucleation theories).



Screw dislocation or spiral growth

From: Davis et al. (Science 290: 2000) 



Crystal growth and dissolution
There is no universally-accepted theory for crystal growth, especially when dealing 
with specific growth inhibitors that are frequently encountered in natural 
environments. Nevertheless, as a first approximation, one can assume that 
surface-reaction controlled growth in the presence or absence of inhibitors follows 
a relation of the form:

δrc/δt = k (Cbulk – Ceq)n

where n > 1.
In many respects, dissolution can be considered as the inverse of precipitation/ 
growth. Like precipitation, dissolution rate is controlled either by transport or by 
surface reactions. Also, like precipitation, dissolution can be visualized as taking 
place by the migration of steps and kinks, and deceleration of dissolution may 
occur by the adsorption of inhibitors at the kinks.
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