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Principles of Chemical Kinetics

Thermodynamics (or the free energy of the system) tells us if the reaction is

energetically feasible (or spontaneous) and in which direction it should proceed.
However, ...

aA+bB &> cC+dD

For example:

Cdiamond 9Cgraphite ARXGO =-2900 J/mol

Similarly,

2N,(g) + 50,(g) + 2H,0(l) €=> 4 NO; + 4H*
AryG° = 28282 J/mol and In K = - A,,G° /RT

K =1049%> = a(H*)* a(NO3;)*P(N,)? PO,
= (10-8)* a(NO3)4/(0.78)? (0.21)>

[NO3]eq = 7.2 % 10> M whereas the average value in the oceans is 3 x 10° M



Principles of Chemical Kinetics

What is chemical kinetics?

It is a description of the state of a reactional system as a function of
time or, more precisely, of the rate of chemical changes (e.g.,
concentration) of the system, d{/dt and of the process involved.

Reactions that take place within a single phase (e.g., between
molecules and ions in solution) are homogeneous reactions.

Those that take place between species in two different phases (e.g.,
air/liquid, liquid/solid, liquid/liquid, etc.), where the reaction usually
occurs at the interface of the two phases, are called heterogeneous
reactions.



Rate determining step

Whether homogeneous or heterogeneous, reactions can be separated
into three different steps:

A+B<&>C+D

1) Transport of the reacting species towards each other or to the
Interface, which is generally done through diffusion: > A B &
(transport)

2) Chemical transformation of the reacting species: AB - CD
and finally,

3) Transport or separation of the reaction products < CD -
which also generally occurs through diffusion.

The slowest step will control the rate of the reaction. Thus, two types of
reactions can be distinguished in natural systems: some reactions are
transport- or diffusion-controlled whereas others are purely chemically-
controlled.



Chemically-controlled reactions

The chemical transformation process may be composed of only one
elementary step, but more often, it is complex and composed of a
suite/sequence of simple reactions or elementary reactions. For
example, let us consider the following overall reaction:

Hg#* + 3CI- €-> HgCl;

As written, this reaction would require the simultaneous encounter or
collision of four separate ions. The probability of the simultaneous
encounter and reaction among four separate ions is very low. It is more
reasonable to imagine that the reaction takes place as a stepwise
formation of complexes with increasing chloride coordination such as:

Hg?* + Cl- &> HgCl*
HgCl* + CI- €-> HgCl.°
HgCl,° + CI- €-> HgCl;



Consecutive and concurrent reactions

The mechanism of an overall chemical reaction in solution will most often
include a combination of simple unimolecular or bimolecular (rarely
termolecular) steps taking place:

A->B->C
CO, + H,0 € H,CO; € H*+ HCO; <> 2H* + CO,*
238|) > 234Th = 230Rg

A->B, A->C, A->D
40K 9 40Ar’ 4OK 9 40Ca

Each step may be reversible (i.e., appreciable rate in the forward and
reverse directions) or irreversible. The slowest step in a sequence of

elementary steps is rate-controlling for that sequence and determines
the overall rate of that sequence.



Molecularity of a reaction

The molecularity of a reaction is defined as the number of molecules of reactant
participating in a simple reaction constituting an elementary step.
For example, unimolecular reactions involve a single molecule:

A - B: Cdiamond 2 Cgraphite1 1“C > 14N1 or
A-> B+ C: CaCO, > Ca?*+ CO,%, N,O, > 2NO,

In bimolecular reactions, two identical or different species combine to give a
product or products such as:

A+A>A,
A+B>AB:D+T>4%He+n, L+ > I3

They are also called association reactions.

A+ B > C+D: CaCO; + H* - Ca** + HCOy
A+A>E+F

They are also called exchange reactions.

Termolecular reactions are unusual because they require that the three species
encounter/collide at the same time to yield the products.

A+B+C > X+ ...



Rate Expressions for Elementary Reactions

The temporal evolution of the reaction: A - B can be represented graphically in
the following manner:

N B where Nx = number of moles in the system.
(or [Xx]) If the volume of the system is constant, then
NXx can be replaced by concentration, [X].
A

time
The average reaction rate between t; and t, will be given by:
Ry= (X, - [XI/(, - 1)
so that R, will always be positive, we will write:

R = -AlX], /At =A[x], /At =-A[A]/At =A[B]/ At

In fact, what we really want to determine is the value of the rate at each point

or time t, which is given by the slope of the tangent to the curve at a given
point.

R = -d[A]/dt = d[B]/dt



Polymolecular reactions

When the stoichiometry of the reactants and products are different, such
as in the following reaction:

2A + B > 2N
ThenR; =1/2R, 2 -d[B]/dt = -d[A]/2dt
and R, =Ry - -d[A]/dt = d[N]/dt _
the rate of the overall reaction can be described as:
R = -d[B}/dt = -1/2 d[A]/dt = 1/2 d[N]/dt

As a general rule, for a reaction of the type: =

aA+bB+.. 2nN+mM+ ... Time
the reaction rate will be defined as:

R =-1/a d[A]/dt = -1/b d[B]/dt = 1/n d[N]/dt = 1/m d[M]/dt

where the letters in lowercase correspond to the molecularity.



At a constant temperature, the rate of a reaction is related to the concentration
(probabilility of encounter) of the reactants so that for:

aA+bB+... 2>2nN+mM + ...
R = -1/a d[A]/dt = 1/n d[N]/dt = k [A]® [B]® ... = K IT [C;]"!

where k = the rate constant that is characteristic of the reaction at a given
temperature whereas a and 3 are the partial orders of the reaction with respect
to each reactant.

For an elementary reaction, the reaction order is also equal to the molecularity
of the reaction, a = a and 3 = b which does not hold true for complex reactions
such as most reactions occurring at interfaces.

The overall reaction order is equal to the sum of the partial orders,n=a + 3 + ...

Ex:  HyOppq + 2Fe?* + 2H* 5 2Fe’* + 2H,0,
R = -d[H,0,]/dt = -1/2 d[Fe2*]/dt = -1/2 d[H*]/dt
= 1/2 d[Fe3*]/dt = 1/2 d[H,O]/dt
R =k [H,0,] [Fe?*]? [H*]?
but experimental investigations have shown (as one could have guessed given

the molecularity of the reaction) that it is not an elementary reaction. In fact, the
order of the reaction can only be determined experimentally.

R = -d[H,O,]/dt = k [H,O,] [Fe?*]




Rate constants and kinetic expressions of simple reactions

For a monomolecular elementary reaction: A - B, the reaction rate is given
by the differential equation:

R = -d[A]/dt = d[B]/dt = K[A]

where k is the first-order rate constant and has units of sec* (or more
generally t1) if the rate is expressed as M sec!

For the bimolecular reaction: A + B - product, the rate of change of [A] is
given by:

R = -d[A]/dt = -d[B]/dt = k [A] [B]

n =2, a =1 with respect to [A] and = 1 with respect to [B]
and k is a second-order rate constant with units M1 sec™! if the rate is still
expressed as M sec!

For the bimolecular reaction: A + A = product, the corresponding rate
equation is:
R = -d[A]/dt = k [A]?

In which case, the rate of disappearance of A is second-order wi/r to [A]



Rate constants and kinetic expressions of complex reactions

Reversible or opposite reactions
A<—>B

represent a combination of two elementary unimolecular reactions. The rate
expression of this reaction at constant T is:

R = -d[A]/dt = k,[A] - k4[B] = d[B]/dt
at equilibrium in a closed system, at a macroscopic level:
R = -d[A]/dt = d[B]/dt =0 - [B]/[A] = k,/k ;

The equilibrium constant for this reaction is also equal to [B]/[A] and therefore K =
K,/K 4, the ratio of the rate constants for opposing elementary reactions is equal to
the equilibrium constant ...

For opposing elementary bimolecular reactions such as:
A+B<>C+D

the rate expression is described by:

R = -d[A}/dt = -d[B]/dt = k,[A][B] - k_,[C][D]

At equilibrium,
R = d[A)/dt = d[B]/dt = d[C]/dt = d[D]/dt = 0 and k,/k_; = ([C][D]/([A][B]) = K
(Ex: O3 €2 O, + O)



Rate constants and kinetic expressions of complex reactions

Consecutive opposing reactions
Consider a sequence of opposing elementary reactions

A+B<&¢>CandC<¢—>D

At equilibrium, each elementary reaction and the reverse reaction must occur at the
same rate. This requirement is known as the principle of microscopic reversibility.
Consequently,

-d[A]/dt = d[C]/dt = k,[A] [B] — k4[C] = 0O,

And therefore [C]/([A][B]) = k,/k_, and d[D}/dt = k,[C] — k_,[D] = O
leading to [D)/[C] = k,/k_, = K, so that [DJ/(JA[B]) = Ky, = (K;K,)/(k(K_,)

In general, the principle of microscopic reversibility leads to the following expression:

K;, = IT (ki/k;) for n consecutive opposing elementary processes.



Rate constants and kinetic expressions of complex reactions

Consecutive irreversible reactions

A sequence of elementary unimolecular reactions such as:
A>B->C

Is described kinetically by:

-d[A]/dt = k,[A], d[B]/dt = k,[A] - k,[B] and d[C]/dt = k,[B]

Concurrent or parallel reactions

A simple case is a mechanism in which a single reactant gives different products.
A->B, A>C, A->D

for which the rate equation is: -d[A]/dt = (k; + Kk, + k3)[A]

Another simple combination of unimolecular reactions involves different reactants to
yield a single product:

A>C, B>C
for which -d[A]/dt = k,[A], -d[B]/dt = k,[B]
and d[C]/dt = -d[A]/dt - d[B)/dt = k,[A] + k,[B]

Unlike consecutive reactions for which the slowest reaction is the rate determining
step, in the case of parallel reactions, the fastest reaction determines the overall rate
of the reaction.



Rate constants and kinetic expressions of complex reactions

A combination of concurrent bimolecular and unimolecular steps to form a
common product:

A+B->C, A>C

yields the rate equation: d[C]/dt = k,[A][B] + k,[A]

CaSO, + Na,Ca(S0,), + 2K* + Mg* + SO, + 2H,0 >
K,MgCa,(S0O,),*2H,0 + 2Na*

anhydrite + glauberite - polyhalite
(in the sequence of precipitation during the evaporation of seawater)

2CaS0, + 2K* + Mg?* + 2H,0 > K,MgCa,(S0,),*2H,0



Rate constants and kinetic expressions of complex reactions

There are essentially unlimited combinations of elementary reactions to yield
complex mechanisms for overall reactions.

The case of opposing reactions followed by one irreversible reaction represents a
mechanism encountered frequently in overall reactions:

A<E>Band B> C
O; <> 0,+0and O + O; 2 20,

If the opposing reactions are rapid and the second reaction is slow, a simple result
IS obtained by the approximation that d[B]/dt ~ O (near equilibrium).

This approximation is known as the stationary-state assumption, then:

d[B]/dt = k,[A] - k4[B] - k,;[B] = 0 and [B] = k,[A]/(k ;+ k),

the rate equation becomes:

d[C)/dt = k,[B] =k, k{[A])/(k{ + k)

as k_,>>k, (initial assumption), d[C]/dt = k,k,[Al/k_; = K k,[A]

where K,= k,/k ; for the equilibrium between A and B (microscopic reversibility)



Rate constants and kinetic expressions of complex reactions

If a reaction is a single elementary reaction, the form of the rate expression
observed experimentally will be precisely that expected from the
stoichiometry of the elementary reaction

ex: H,CO; + H,O0 €< HCO, + H;0*

Although a number of important aqueous reactions, such as dissociations,
hydrations, substitutions, and ion-pair formation reactions consist of single-
step mechanisms, the bulk of solution (homogeneous) and heterogeneous
reactions take place by complex mechanisms, and the overall stoichiometry
of the reaction often has no relationship with the form of the observed rate
equation.



Integration of kinetic expressions

In a few cases, it is possible to integrate the rate equations to determine the exact
concentration gradient with time.

Starting with the simplest case of a unimolecular irreversible reaction such as:

A - B + ... where -d[A]/dt = k[A]
(radioactive decay, 1“C > “N + &)

Separating the variables, we obtain: -d[A]/[A] =kdt

and integrating between concentrations of [A] to 0 in a time interval of o to
J A -d[A]/[A] = Jo Kt

we get: -In[A] = kt + constant

since [A] = [A], at t=0

then the constant = -In [A], and In [A]/[A] = kt or [A] = [A], e™

The half-time of this reaction, t;,,, which corresponds to the time after which the
concentration of the reactant is equal to half its initial value is given by:

In [Al/([Al/2) = In 2 = kt,, or t,,, = In 2/k



Integration of kinetic expressions

For second-order reactions such as:
2A > B + ..., -d[A]/dt = K[A]?

0 00
Integrating after separating the variables, j a1 -d[A]/[A]? = fo kdt ,
we get: 1/[A] = kt + constant
since [A] = [A], at t = 0, constant = 1/[A],
then 1/[A] — 1/[A], = kt or ([A], — [AD/([A][A]y) = kt
The half-life for this reaction is given by:
ty, = 1/k ([Alp — 0.5[A]p)/(0.5[A]o[Alo) = 1/k (0.5[A]o/(0.5[A]y?) = L/(K[A]o)

The half-life is inversely proportional to the initial concentration of the reactant.



Pseudo-order or zeroeth-order reactions

If certain species concentrations, [X|], are kept constant over the course of the
reaction, the factors [X;]*' that would normally appear in the rate expression are
constant and become incorporated in the rate constant.

For a process such as:

A - P where the rate law is -d[A]/dt = k
iIn which case [A], — [A] = kt t
The rate is constant and the half-life of the reaction is t,,, = [A],/(2k)

Na

This reaction is zeroeth-order in the concentration of the reactant. In other words, the
reaction rate is independent of that reactant. Often the case of heterogeneous
reactions on the surface of a solid.

The rate constant may include one or many concentration terms if the concentration
of the reactants is constant over the course of the reaction. These are called pseudo-
order reactions.



Pseudo-order or zeroeth-order reactions

The rate law for the reaction: A+2B+C 2> P
would normally be written: -d[A]/dt = k [A] [B]? [C]

If the concentrations [B] and [C] remain constant (through being in great excess
or replenished by other reactions), the apparent rate law would reduce to:

-d[A]/dt = k' [A] where k' = [B]? [C]
and the reaction is pseudo first-order with respect to [A]

COyq + H2O() €2 H,COz(aq)

This reaction is rather sluggish compared
to the almost instantaneous dissociation
of H,CO, to HCO;  and CO;*

'd[COZ](aq)/dt =k [COZ](aq) [HZO] =K [COZ](aq)

t (sec) —=

The reaction follows a first-order rate law wi/r to [CO,],, since in most natural
systems [H,O] is more or less constant and not affected by the reaction.

The rate constant k' = 2.0 x 103 sec! at 0°C which makes the half-life of the
reaction ~ 6 minutes.




Influence of temperature on the reaction rate

In the majority of cases, the rate of chemical reactions increases with the
temperature. Arrhenius (1889) proposed that the rate constant of a reaction is
exponentially related to temperature, such that:

k — A e-B/RT

where A and 3 are constants for a given reaction. This relationship applies to all
elementary reactions for which the reaction rate can be expressed by: R = k 11 [X]"

Ais a frequency factor and represents the probablility that the molecules of
reactants will encounter (collide) each other (in the proper orientation)

B is the activation energy of the reaction or the energy necessary to bring the
molecules of reactants to a high enough energy state following a collision so they
can react with each other. In other words, the expression is the probablility that
molecules of reactants will acquire the energy necessary for them to react following
an appropriate collision.

Number
of

Particles Y | threshold
(frequency) | energy

Kinetic Enargy



Influence of femperature on the reaction rate
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Nucleation and crystal growth

The overall process of mineral precipitation from a supersaturated solution
(or a cooling melt) can be divided into a number of steps
—> nucleation and growth

The interaction between ions or molecules in solution lead to the formation
of a cluster

X+ X =2 X,
- - . - ;
X2 + X 9 X3 o'-_uic‘lﬂe-'- . ===P‘:=:F*==Eﬁ sk d.f\\
F’! ;‘ M 'ﬂ*" o o

X1 + X =2 X (cluster)
X; + X =2 X;,; (nucleus)

and eventually to a nucleus from which spontaneous growth can occur. The
nucleation process determines the size and the size distribution of crystals
produced. Subsequently, material is deposited on these nuclei and the
crystal grows.
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©1994 Encyclopaedia Britannica, Inc.



Nucleation and crystal growth

Nucleation will only occur when a certain degree of supersaturation is attained
since an activation energy barrier must be crossed before crystal growth can occur.
The free energy of formation of a nucleus, AG+, consists of energy gained from
making bonds between ions/molecules and the work required to create a surface:

AGT =AG, | + AG ey

where AG, . is the free energy of the crystal and AG,,.; is the interfacial free
energy. For the crystal to grow, the change in free energy gained through the
formation of the mineral must exceed the interfacial energy, otherwise the nucleus
is unstable and will be disrupted by molecular motion before it can grow to a stable
size.

Supersaturation is the driving force for crystal growth and, within limits, the greater

the supersaturation state, the faster the growth rate. Therefore, there is a degree of
supersaturation at which there is a greater probability of crystal nuclei to grow than

being disrupted.

AGy, = -n KT In (IAP/Ky,) = -n KT In Q = -(4n r3)/(3v) kt In Q = -(4r r3)/(3v) AG,,
where n = number of molecules or ions in the nucleus, k is Boltzman’s constant,

(IAP/Kg,) = Q = degree of saturation, and AG,, is the free energy change per unit
volume of crystal.



Nucleation and crystal growth
AGinterf =Ac

where o = interfacial energy, A = surface area = 4 nr? for a spherical nucleus.
Hence, the free energy of the nucleus formation can be written as:

AG;= 4+ (4Arr3)/3AG, =46+ nkT In Q

The equation shows that for small values of r (small # molecules or ions) and a fixed
degree of saturation, that the free energy change increases with an increase in n (or
J) until some critical radius (r.) or cluster size (j.) is reached, after which the change
in free energy decreases with further increase in r or j. Once nuclei of critical size are
formed, crystallization can occur spontaneously.

The point of maximum free energy is a state of equilibrium (metastable) where the
solution of a given Q can be considered just saturated w/r to crystals of the size of the
critical nucleus.

[ -
DG ® €% Additional ions

energy

crystalline
barrier polymorph

A4

reaction coordinate



Metastability and particle size

Finely grained particles have a greater solubility than large crystals. As a
consequence, small crystals are thermodynamically less stable and should
recrystallize into larger ones (Ostwald’s Ripening). The increase in the free energy
of the small particles results from their large interfacial energy.
The change in the free energy AG involved in subdividing a coarse solid
suspended in an aqueous solution into a finely divided one of molar surface S is
given by:

AG=2/3c6S

where o is the mean free surface energy (interfacial tension) of the solid-liquid
interface. Consequently,

(dIn K,,/dS); =2 o /RT or log K, = 108 K ,s-0) + 2/3 5 S/(2.3RT)

1660

log Ksg =16 BI+9x |10 7§

| Figure 7.23. Effect of molar surface on solu-
0 1000 2000  bility product of ZnO (25°C. / = 0). (From
S(m’) Schindler. 1967.)
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Figure 7.24. 1a) Influence of molar surface on selubility of CuO and of Cu(OH), at
pH = 7.0. [From data on solubility constants and surface tensions by Schindler (1967,
The relations depicted have been validated expenmentaiiy only for § < 10* m".] The
figure suggests that Cu{OH),(s) becomes more stable than CuO(s) for very finely di-
vided CuO crystals (§ > 3 x 10 m". d < 40 A). Plausibly. in precipitating Cu(Il).
CulOHbsisy mav be precipitated (d = very small). but CuCis) becomes more stable
than Cu{OH), upon growth of the crystals, and an inversion of Cu(OH). into the more
stable phase becomes possible. (b) Change in caleite solubiiity with particle size. as-
suming cubic shape and ¥ = 85 mJ m™". (From Morse and Mackenzie. 1990.) (¢
AG*® for the reacuion + -Fe,0, + { H.O = @-FeQOOH is plotied as a function of particle
size assumuing equal parnicle size for goethite and hemaute. For egual-sized hematite
and goethite crystals. goethite is more stable than hematte when the particle size
exceeds 760 A but less stable than hematite at smaller particle sizes. {From Langmuir
and Whinemore, 1971.)



Nucleation and crystal growth

Theoretically, at a high supersaturation, the nucleation rate is so high that the
precipitate formed consists mostly of extremely fine crystallites and, if the nucleus
Is smaller that one unit cell, the growing crystallite is most likely amorphous (gel-

like).
In most cases, however, nucleation results in a rapid decrease in the saturation
state and growth on the initially formed crystals > homogeneous nucleation.
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Nucleation and crystal growth

Heterogeneous nucleation, however, is the predominant process by which
crystals form in natural waters. It occurs when the presence of foreign solids (e.g.,
dust, seed, other mineral crystallites) catalyze the nucleation process by reducing
the energy barrier .

If the surface of the foreign nucleus AG
matches well (e.g., lattice type, atomic
distances) with the supersaturated
mineral, the interfacial energy between
the two solids, o, is smaller than the
interfacial energy between the mineral :
and the solution, o, nucleation and r
growth will occur at lower
supersaturations




Crystal Growth

The growth of crystals occurs through a number of steps:

(a) Transport of the solutes to the crystal interface

(b) the adsorption of the solutes at the surface (including surface nucleation,
dehydration, ion-exchange, surface diffusion)

(c) incorporation of the crystal constituents into the lattice and/or removal of
reactions products, if any.

Ignoring the latter, the rate of crystal growth may be limited either by transport, by
surface reactions, or by a combination of both processes.

Crystal Growth Ratg
Limiting Steps

¢ Boundary Layer
Diffusion

e Surface Diffusion
e Surface Nucleation
— Mono
— Poly
e Screw Disslocation
e Edge Diffusion
e Kink Site Adsorption

e Loss of Coordination
shell




Crystal Growth

In pure transport-controlled growth, ions are attached so rapidly to the surface
of the crystal that the concentration in solution immediately adjacent to the
crystal is lowered to close to the equilibrium or saturation level. Growth is then
limited by the rate at which ions can migrate to the surface by diffusion or
advection. The rate of growth, consequently, depends upon hydrodynamic
conditions in solution, with faster growth resulting from increased flow velocities

(e.g., stirring rate in solution).

{a) Transport control
bl Surface-reaction coniral
{ch Mimed transpor and surlnes-ressisn coniro



Crystal Growth

Conversely, for pure surface-controlled growth, attachment of solutes through
surface reactions is so slow that concentrations adjacent to the surface of the
growing crystal build up to values that are nearly the same as in the bulk
solution. The rate of growth is limited by surface reactions and is not affected by
the increased flow velocities in the solution.

S
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Figusg 3-2. Schematic representalicaNGal eoncemiration i ol
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Crystal Growth

As you can imagine, a number of intermediate situations between the two ideal
conditions, where surface reactions are sufficiently fast that solute depletion
occurs adjacent to the crystal surface, but transport prevents the concentration
from being lowered to the saturation level.

As the rates of surface attachment are a strong function of the degree of
supersaturation, the rate controlling step in the growth of a crystal may change
from transport-control at high supersaturations to surface-control at low

supersaturations.

{a) Transpor control

Fiausg 5=2. Schematic representation of Cory
radial distance r, from the sarface of g

Lo CONoeniratim out il soli i

ki Surface-reaction coniraol
|cb Muned transport and sorlace-re it goniral



Transport-controlled Growth

Growth via molecular diffusion constitutes a limiting situation of the transport
growth-limited mechanisms (e.g., stagnant solution, no stirring)

The rate of growth of a crystal via molecular diffusion can be calculated theoretically
If the crystal can be approximated to a sphere using Fick’s second law of diffusion:

SC/5t = D (52C/6x2) = D(82C/r2 + 2/r (5C/5r))

which states that the rate of change of the concentration of a component i is equal
to the second derivative of the linear concentration gradient multiplied by the
diffusion coefficient.

Solving this equation for a constant r and the proper boundary and initial conditions:
C(r,0) = C, = Cpui

C(re,t) = Ceq

C(oo,t) = C,, = Cpyi

leads to or /ot =V D (Cy, = Ce)/1, .
where r. is the radius of the crystal sphere, D is the molecular diffusion coefficient, V

Is the molar volume of the precipitate and Cy,, and C,, are the solute concentrations
in the bulk solution and at equilibrium with respect to the precipitate.

If advection becomes more efficient at transporting the crystal component to the
surface of the growing crystal: 6C;/ot = v ((6C/dx)



Fick’s first law of diffusion
Steady-State Diffusion
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Fick’s first law gives us the flux of the component, but does not tell us how the
concentration of the component varies in time.



Surface-reaction controlled growth
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Surface-reaction controlled growth

Many theories of surface-reaction controlled growth were developed, but we will
only consider two:

1) surface-nucleation controlled growth

2) dislocation-controlled growth

In the surface-nucleation controlled growth, the rate determining step is the
nucleation of a flat, two-dimensional crystal one atom thick on an otherwise
atomically smooth crystal.




Surface-reaction controlled growth

Surface nucleation creates atomic-sized steps on the surface where attachment of
new ions is facilitated. As the number of direct bonds on the surface increases,
attachment becomes energetically more attractive. Hence, holes are more
energetically favorable than kinks and steps.

The attachment of ions at kinks creates new kinks, so the process of crystal growth
can be visualized as the migration of kinks and steps until the surface is covered.

NUGLES
~_ KINK
T
34
STEP KINK

FIGURE 5-3. Idealized representation of the surface of a crystal. Dimension d represents
one atom, molc_cu]c. unit cell, etc. On the flat crystal surface a flat (“two-dimensional”)
surface nucleus is present which exhibits monoatomic steps and kinks.



Surface-reaction controlled growth

In order to provide steps and kinks for the next surface layer, a new nucleus must be
formed on the surface. The rate at which the surface nucleus forms is the rate-
determining step and can be calculated from the standard nucleation theory.

According to the mononuclear theory, the rate of growth is limited solely by surface
nucleation. In other words, once a surface nucleus has formed, the rate of spreading
of its steps by ion/atom attachment is so fast that the entire monoatomic crystal layer
is formed before another surface nucleus is created. Each atomic layer on the
crystal is formed from only one surface nucleus. ...

A more probable situation is polynuclear growth or “birth and spread” model.




Polynuclear growth on a calcite surface

Figure 4.5.9 TEM image of the overgrowth-coated inorganic seed crystal.
Magnification is approximately 180.000X.



Screw dislocation or spiral growth

Growth at intersections of screw dislocations with the surface of the crystal. Screw
dislocations are common in all crystalline substances. Crystal growth occurs along
atomic steps provided by the outcropping rows of atoms on the surface. No
nucleation of new steps is required since the screw dislocation outcrops are always
present. Crystal growth at the outcrops occurs as a spiral-like rotation of the steps,
by continuous attachment of ions/molecules, around the screw axis and can even
be maintained at very low supersaturations (impossible according to surface
nucleation theories).
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Screw dislocation or spiral growth
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Crystal growth and dissolution

There is no universally-accepted theory for crystal growth, especially when dealing
with specific growth inhibitors that are frequently encountered in natural
environments. Nevertheless, as a first approximation, one can assume that
surface-reaction controlled growth in the presence or absence of inhibitors follows
a relation of the form:

8re/3t = K (Cpui— Ceg)"

where n > 1.

In many respects, dissolution can be considered as the inverse of precipitation/
growth. Like precipitation, dissolution rate is controlled either by transport or by
surface reactions. Also, like precipitation, dissolution can be visualized as taking
place by the migration of steps and kinks, and deceleration of dissolution may
occur by the adsorption of inhibitors at the kinks.
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