
NONTECHNICAL SUMMARY

Constraints on energy dissipation in the earth's body tide from
satellite tracking and altimetry

The gravitational tug of the moon and sun generate tides in the ocean, the
atmosphere, and the solid earth. The earth tides are typically about 30 cm. Because
the earth is not perfectly elastic, there is a small lag in the earth's response to the tidal
forcing. The lag is very small and difficult to determine, nearly hidden within the much
larger response of the oceans. But knowledge of the lag tells us important information
about the earth's deep interior.

We have recently determined the earth's tidal lag by combining radar data from
the Topex/Poseidon altimeter with laser tracking data of Lageos-1 and several other
satellites. The combination of geometrical measurements from Topex/Poseidon with
(in essence) gravitational measurements from Lageos allows us to separate the tidal
effects of oceans and solid earth. We find a phase lag in the earth's principal
semidiurnal lunar tide of 0.204°±0.047°, corresponding to a time lag of approximately
25 seconds. This implies that the solid tide dissipates at least 110 gigawatts of tidal
power, or about 5% of what the ocean tides dissipate.
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SUMMARY

The phase lag by which the earth's body tide follows the tidal potential is estimated for

the principal lunar semidiurnal tide M2. The estimate results from combining recent tidal

solutions from satellite tracking data and from Topex/Poseidon satellite altimeter data.

Each data type is sensitive to the body-tide lag: gravitationally for the tracking data, ge-

ometrically for the altimetry. Allowance is made for the lunar atmospheric tide. For the

tidal potential Love number &2 we obtain a lag e of 0.20° ± 0.05°, implying an effective

body-tide Q of 280 and body-tide energy dissipation of 110 ± 25 gigawatts.
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1 INTRODUCTION

Kelvin's famous dictum that the earth has the rigidity of steel arose from consideration of the tides.

Over the next hundred years developments in seismology greatly refined our picture of the earth's

interior, rightly overshadowing any small contnbution from tidal studies. Yet knowledge of the earth's

anelastic dispersion requires data outside the relatively narrow seismic band. At periods between 10

hours and 20 years, the tides and the closely related nutations are very nearly the only tools in hand.

It is therefore understandable that much excitment was generated in the mid-1960's when tidal

perturbations were first detected in the orbits of artificial satellites These perturbations appeared to

be a direct route to determining the global earth tide, and several groups (e g , Newton 1968; Kozai
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1968; Smith, Kolenkiewicz & Dunn 1973) soon published estimates of the potential Love number fo,

including the small component out-of-phase with the tidal potential. A clearly evident goal was to

obtain observational estimates of the angle e = — arg fa, defining how the solid tidal strain lags the

tidal stress; from e follow direct estimates of the body's specific dissipation function Q~l = tan e and

its tidal energy dissipation.

Unfortunately, none of these early attempts to deduce ki from satellite tracking data was success-

ful. The estimates, particularly those of e, were corrupted by the ocean tide, which gives rise to the

same spectrum of orbit perturbations as the solid tide (Lambeck, Cazenave & Balmino 1974) yet was

too poorly determined to remove from the data. By the mid-1970's this was generally acknowledged

and attempts to infer e from satellite data were largely abandoned. Over the next two decades the ac-

cepted procedure for analyzing satellite data was to adopt a prior model (usually an elastic model) of

the body tide and to assume that all remaining tidal signals were due to the ocean tide (and its load

deformation).

In light of the vastly improved knowledge of the tides from the Topex/Poseidon (hereinafter T/P)

satellite altimeter mission (Le Provost, Bennett & Cartwright 1995), a clearer separation of ocean and

earth tide signals in satellite data is now possible. In essence the separation is possible because the

tracking data are sensitive to the gravitational effect of the ocean + earth tides, while the altimeter data

are sensitive to the geometrical (elevation) effect. We recently published an attempt to extract e from

tracking and altimeter data, obtaining e = 0.16° and Q = 370, although with rather large error limits

(Ray, Eanes & Chao 1996). The present paper is a much more thorough discussion of the analysis of an

expanded dataset. The newer data allow the uncertainties in e and Q to be tightened considerably. As

in the initial paper, attention is restricted to the principal lunar semidiurnal tide M.%; the solar tides are

confounded by insolation and atmospheric effects, while the diurnal tides are smaller and less reliably

determined

This work is based on estimates of the degree-2, order-2, prograde coefficients of M2, which

describe the nominal ocean tide as reported from altimetric and tracking analyses. (In this context,

"prograde" means in the direction of the tide-raising body, i.e., westward.) In terms of its geometrical

height fluctuation relative to the seabed, we express this wave as

C(0, <p, t) = D}2 cos(ut + 2(p- ^22) P%(cos 0) (!)

where (9, <p) are spherical polar coordinates, u> is the frequency of M2, and P2
2 1S an (unnormal-

ized) associated Legendre function. Section 3 lays out the method whereby altimetric and tracking

estimates of D^ and t/^ may be combined to yield e. This is followed by sections describing our

adopted altimetnc and tracking solutions Careful attention must be given to the tracking solutions to

ensure consistency in adopted geophysical constants and mathematical formulations. (The altimeter
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solutions are all based on various analyses of T/P data; they are already consistent in regard to adopted

constants.) Section 7 presents our deduced estimates of the lagged body tide, followed by a discussion

and comparison to other models and previous estimates.

2 HISTORICAL PERSPECTIVE

It is enlightening to consider the various attempts over the past several decades to deduce the tidal

coefficients (D^, ^22) from hydrodynamic models, from oceanographic data, and from satellite data.

Figure 1 shows four historical snapshots of estimates for the years 1977, 1986, 1991, and 1995. Note

the change in scale for each diagram; the zoomed square in Figures la, Ib, and Ic represents the whole

of Figure Id. The plotted data are not comprehensive—every published value over four decades could

hardly be included—but we have attempted to include estimates that at these times were widely known

and were considered senous attempts at accuracy. Some points (e.g., those of Schwiderski and Parke

& Hendershott) are included in more than one diagram, because they continued to be widely employed

over many years. Coefficients for some of the early models were not given by the original authors but

were computed by Lambeck (1977) from the original cotidal charts, we have extracted the relevant

data from Lambeck's tabulations. The overall picture from Figure 1 is surely one of considerable and

steady progress.

Figure Id (circa 1995) is adopted from Ray etal. (1996). It is the first in which accurate estimates

from the T/P altimeter mission are included. The updated version of this diagram for the present paper

is given in Figure 2, which shows tidal coefficients described below in Sections 4 and 5.

In both Figures Id and 2 it is clear that the tracking and altimeter estimates form two separate

clusters, with an approximately 4% discrepancy in the out-of-phase component. This discrepancy

forms the basis of the present paper. Our interpretation of the discrepancy, following our earlier paper,

is that it arises from the different ways an anelastic body tide perturbs altimetnc and tracking estimates

of the ocean tide when both adopt strictly elastic solid-tide models. The discrepancy allows a direct

empirical determination of the anelastic component k% sin e of the body tide.

3 THEORY

The basic approach is to examine the secondary tidal potentials that are induced by the tidal defor-

mations of the earth, ocean, and atmosphere. Satellite orbit perturbations, monitored by the tracking

observations, directly sense the entire planetary tidal potential. By decomposing this potential into its

solid and fluid components and using the altimetry to estimate (primarily) the ocean component, one

arrives at an expression that can be solved for the body lag e based on the out-of-phase discrepancy



4 R. D. Rayetal.

seen in Figure 2. We also allow for the possibility of estimating a load tide lag e' from any in-phase

discrepancy, although clearly for our data in Figure 2 such discrepancy must be small; moreover the

standard errors for e' turn out to be so large this estimate is of little value. The present section develops

this outline in detail.

In the following we will drop sub- and superscripts on D^, ^2, but will add superscripts T or A

to denote Tracking or Altimetry solutions, respectively. We also drop subscripts on Love and loading

numbers k<z, k'2. These numbers will be treated as real, and any phase lag will be expressed explicitly

through a complex factor e~te.

Assume the earth is a spherical body of radius a. Errors caused by the neglect of the earth's

flattening should amount to no more than 0.3%, which is an order of magnitude smaller than the 4%

discrepancy that forms the basis of our analysis. Future work may merit ngourous accounting for the

flattening, but the simplicity of the spherical approximation prompts us to ignore it for now.

The primary astronomical potential for M2 on the earth's surface can then be written (Cartwright

&Taylerl971)

$p(0, <p, t) = gH P2
2(cos 0) cos(u;« + 2<p) (2)

where g is the gravitational acceleration, u is frequency, t is time reckoned from the instant the mean

moon passes the Greenwich (or 180°) meridian, and P^(cos0) = 3sin20. The constant H is an

equilibrium tidal amplitude (potential divided by g) as given in the tables of Cartwright & Edden

(1973):

H = v/(5/967r) x 63.194cm = 8.1367cm (3)

A secondary potential $5 is generated by the planetary tidal deformations. It can be decomposed

into three components:

$s = $f + $S+L + <&1̂  (4)

arising from the body tide, the ocean tide and its load, and the atmospheric tide and its load.

Let us write all potentials in the form

$(0, <p> t) = Re[$ P2
2(cos 0) el^t+2^] (5)

where $ is a complex amplitude exclusive of P2 . Thus, the primary potential simplifies to $p = gH.

Corresponding expressions for the secondary potentials are

«| = gHke-" (6)

k'e-ie')De-*1> (7)

-lf')Ee-*x (8)
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where pw is the mean density of seawater, pe is the mean density of the earth, (D, t/j) are coefficients

of the ocean tide (corresponding to the one prograde spherical harmonic given by Eq (1)), and (E, x)

are similar coefficients for the atmospheric tide (determined from barometric data) The expression

for $g is simply the primary potential scaled by the k Love number and lagged by the angle e. The

expressions for ocean and atmospheric potentials are well-known thin-shell formulae (e.g., Platzman

1984, Eq. 6) which allow for earth loading through the factor (1 + k') but with k' also lagged by the

angle e'.

We must now relate these expressions to what the tracking and altimeter systems estimate for the

nominal ocean tide. The tracking is most straightforward: in some sense it simply measures the total

$5 and then expresses it as an elastic body tide and a residual ocean tide (including its elastic load):

$s = kgH + ag(l + k')DTe-^T (9)

where a = (3pw/5pe) = 0.1126 (Complications caused by, for example, use of complex Love

numbers in the tracking solutions will be dealt with in Section 5.)

Now the altimeter solutions are based on measurements of the geocentric tide, from which ocean

tides are deduced by again adopting elastic body and load-tide models. That is, rather than directly

evaluating £(0, <p, t) of (1) the altimeter solutions are actually evaluations of

where A& is the difference between the true lagged body tide and the adopted elastic model, and

the difference between the true load tide and its elastic model. Hence, for Love number h and load

number h',

DAe~^A = De~l+ + hH(e~te - 1) (10)

+ De-^ati(e-lf' - 1),

(These expressions tacitly assume that the lag in the potential Love number k is identical to the lag in

the displacement Love number h, and similarly for the load numbers k' and h' Strictly, this need not

be so, although they are not expected to differ by large amounts. According to Zschau & Wang (1986)

the lags in k and h differ by roughly 20%. In any event, the correction terms involving h and h' are

small, and any errors in equating their lags to k and k', respectively, have httle effect on our estimate

ofe.)

We are now in position to equate the tracking and altimeter expressions for $s — that is, Eqs. (9)

and (4, 6-8,10) — on the assumption that the only unknown quantities are e and e'. In equating these

expressions it is helpful to anticipate the smallness of e and e' by keeping only up to first order in these



6 R. D. Ray et al.

quantities. After some algebraic manipulation, we arrive at

= (k - C2)ie

where

Ci = a(l + k')/H = 0.9590 m"1 (12)

C2 = a(l + k')h = 4.752 x 10~2 (13)

C3 = a(l + k')/(pwgH) = 9.445 x 10~5 Pa"1. (14)

By taking real and imaginary parts we arrive at two equations from which e and e' are found. The real

part alone suffices to determine e'.

The form of Eq. (1 1) shows clearly the role of the air tide: on the nght-hand side the air tide terms

are insignificant because they are in direct competition with the ocean tides; on the left-hand side,

however, they may be important because they compete with the much smaller (altimeter — tracking)

difference. It turns out (see below) that the air tide term on the left is marginally significant.

The term involving h' is roughly five times smaller than the term involving A;'. In fact, the estimate

of e is overall rather insensitive to the e' terms, and a fairly good approximate solution is obtained from

simply the first terms on both the left and right of (1 1), giving

e « 1-r D s m ^ - D s m ^ . (15)
K — C/2

4 SATELLITE ALTIMETER SOLUTIONS

The altimeter solutions adopted in this study and shown in Figure 1 are tabulated in Table 1. They are

based on independent analyses of T/P altimeter data. Three of the four are second-generation solutions,

relying on more than six years of data. All four solutions, or their precursors, were found by Shum et

al (1997) to be among the more accurate T/P-based descriptions of the M2 tide, based on comparison

tests with deep-sea tide gauges and bottom pressure recorders and on variance reduction tests with

independent altimeter data.

Both GOT99.2 and CSR4.0 result from empirical tidal analyses of the T/P data, using meth-

ods following Cartwright & Ray (1990) and/or Schrama & Ray (1994). The tidal solutions in both

GOT99.2 and CSR4.0 represent long-wavelength adjustments to the hydrodynamic finite-element

model FES94 1 of Le Provost et al (1994). The other two models in Table 1 are assimilation-type

solutions. The TPXO.4 model is an update to that described by Egbert et al. (1994); its estimates of
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tidal elevations (and currents) are the result of fitting to both linearized hydrodynamic equations and

direct T/P sea-surface height observations. The FES95 2 model (Le Provost et al. 1998) assimilated

the earlier CSR2.0 empirical solution into a finite-elelment hydrodynamic model, using methods fairly

similar to those developed by Egbert et al. (1994).

All four T/P tidal solutions removed the body tide signal from the altimeter data by using an elastic

model with Love number hz = 0.609, which is taken from Wahr (1981). The tidal potential employed

was the harmonic development of Cartwnght & Edden, updated to the 1990-2000 epoch (which is

consistent with our value for H quoted above). Ocean loading corrections were applied based on

high-degree spherical harmonic decompositions and the h'n loading numbers of Farrell (1972); these

calculations are typically performed in an iterative operation following Appendix A of Cartwnght &

Ray (1991).

The required M2 coefficients (D, I/)) are computed by numerical quadrature of the various cotidal

elevation charts. Accurate estimates, of course, require global data, yet the T/P observations are limited

to the latitude band between 66°N and 66°S Hence, all solutions have been supplemented wherever

necessary with numerical hydrodynamic tide models For both solutions CSR4.0 and GOT99.2, the

FES94.1 hydrodynamic model of Le Provost et al (1994) was employed in all latitudes above 66°.

The TPXO.4 solution used its own assimilation procedures in most of the polar regions and required

supplemental data from FES94.1 only for the small Arctic region north of 80°N. While FES94.1 is

probably one of the best tidal models available in polar seas, it cannot match the accuracy attained in

regions where we have direct T/P measurements. Fortunately, the required (2,2) spherical harmonic

is fairly insensitive to the tide in the polar seas. For example, the contribution of FES94.1 to estimates

of D sin V> amounts to only 0.088 mm for the entire region north of 66°N (the region south of 66°S

is just slightly larger), and presumably any error in FES94.1 would perturb the estimate far less than

this. (Strictly, the use of hydrodynamic models to supplement the altimeter solutions is inconsistent

with the analysis of the Section 3, which assumed global altimetry and allowed for an adjustment of

the solid body and load tides. However, all hydrodynamic models account for very minor adjustments

to the D sim/> term, so any inconsistency in mixing altimeter and hydrodynamic models is of no great

importance.)

The only reliable error analysis for the altimeter solutions is supplied with the TPXO 4 estimate

of Egbert (personal communication, 1999). It is based on the inverse methods and error covariances

described in Egbert et al. (1994), which are used in conjunction with some extensive Monte Carlo

calculations similar to those described in Appendix A of Dushaw et al. (1997)

Some corroboration of the size of Egbert's error bar may be obtained by examining the global

frequency-wavenumber spectra of ocean variability obtained by Wunsch & Stammer (1995) from their
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analysis of T/P data. Their three-dimensional spectrum (see their Figure 2a) displays a tidal "ridge" at

the period of 60 days (the tidal alias period in T/P) which is caused by M2 (and also 82) tide-model

errors; the size of this ridge relative to the background spectrum might be taken as an indication of

the size of the tide model error. (The published diagram was based on tide model CSR2.0; Wunsch

(personal comm., March 1996) subsequently updated to model.CSR3.0 and decomposed the spectra

into eastward and westward propagating waves.) The power in the westward degree-2 wave is 0.04

cm2. This includes all orders m = — 2, . . . , 2, and so may be divided by 5 for the (2,2) term alone

(although evidence suggests that the degree-2 zonal has much larger error than the degree-2 sectonal),

giving an rms of 0.09 cm. This must be scaled by V(5/967r) to account for the (lack of) normalization

in (1), giving 0.011 cm for the combined tidal error plus oceanic variability. This suggests that the

error quoted in Table 1—0.013 cm—is realistic, perhaps even conservative. It is roughly consistent

with the scatter (standard deviation 0016 cm) seen in Figure 2.

As our adopted altimeter solution we take the mean of the four models. Thus, for the out-of-phase

component,

DA sin tyA = 3.219 sin 129.814° = 2.472 ± 0.015 cm. (16)

The standard error is Egbert's for TPXO.4 alone, but inflated to allow for the possibility of a roughly

03% systematic error from the neglect of earth ellipticity.

5 SATELLITE TRACKING SOLUTIONS

Six relatively recent tracking solutions for the M2 coefficients (D,tp) are collected in Table 2. They

represent a variety of different approaches to analyzing satellite orbit perturbations and are based on

a multitude of different satellite targets. Some solutions are parts of comprehensive inversions for the

earth's static and time-variable gravity field using extensive historical and recent tracking data from

many satellites; others are based on analysis of orbital residuals observed on one or a few satellites

We briefly describe each of these tidal solutions. GEM-T3S, EGM-96S, and GRIM5-S1 are com-

prehensive geopotential solutions, based on tracking data from 31, 40, and 21 satellites, respectively.

The GRIM-5 solution is an update to that described by Schwintzer et al. (1997), tide coefficients

and relevant constants were obtained courtesy of R. Biancale (personal comm , December 1999). The

solution by Cheng (personal comm., July 1997), deduced from tracking observations of 8 geodetic

satellites equiped with laser retroflectors, was part of a detailed study of temporal gravity variations

(Cheng, Shum & Tapley 1997).

Somewhat more detail should be given for solutions LLA96-1 and -2, because they have not been

described elsewhere. They are single-satellite solutions. LLA96-1 is based on approximately 20 years
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of laser ranging to the geodetic satellite Lageos-1, LLA96-2 on slightly more than 3 years ranging to

Lageos-2. For these solutions the most important data are measurements of long-period tidal pertur-

bations in the satellite's inclination and node, for these are caused primarily by even-degree prograde

harmonics of the tide. Data from a single satellite thus suffice to determine the coefficients D22, ij)£2

and D^, i/>42- (Coefficients of degree 6 and above are less important for Lageos owing to its high alti-

tude; they are adequately handled by a "background" prior tide model, in this case CSR3.0 ) Because

the Lageos-2 time series is relatively short, the LLA96-2 standard error in Table 2 is understandably

somewhat large While the Lageos-1 time series is much longer, its early data are relatively poor by

modem standards. They have been considerably downweighted in the LLA96-1 solution, so its stan-

dard error is only 25% smaller than LLA96-2. A potential source of systematic error can arise from

the proximity of the M2 perturbation period (approximately 14 days for both Lageos satellites) to the

large fortnightly variations in Earth rotation. If the rotation variations are mismodeled, they will di-

rectly corrupt tidal signals in the satellite's node and/or inclination, providing yet another reason to

downweight the early Lageos-1 data.

The only other recent tracking solution that we are aware of is that published by Harwood &

Swinerd (1997). They estimated D^ sin ̂ 22 = 3-n sin 132.0° = 2 31 cm ± 0.06 cm. This solution

falls outside the borders of Figure 2 (notwithstanding its large error bar). It must be corrupted by some

large systematic error(s), and it cannot be considered accurate.

5.1 Adjustment of tracking solutions

Part of the difficulty in using the tracking solutions of Table 2 is understanding and accounting for

the variety of different geophysical constants and mathematical formulations used by the various orbit

groups. Proper accounting for this is crucial. For this work it necessitated careful examination of the

Goddard (GEODYN), Texas (UTOPIA), and French-German (GINS on the French side) computer

codes and other documentations.

We begin with the mathematical formulation of the ocean tide potential. For the partial tide cor-

responding to the (2, 2) prograde component of M2, as in Eq. (1), this potential is often written (e.g ,

Christodoulidis etal. 1988)

3 , i ) (17)

where G is the gravitational constant and r is the satellite radial distance The two distance scales

in (17), RI and R%, we discuss presently. The constants pw,k2,k'2 employed in the various tracking

solutions are tabulated in Table 2.

Because we are essentially combining gravitational potential measurements with geometrical el-
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evation measurements, we wish to ensure that the form of the potential U is as physically consistent

as possible with the geometry of an ocean tide on the earth's surface (here assumed spherical as dis-

cussed in Section 3). The most problematic constant in this regard appears to be pw. In accordance

with Gill (1982) we take pw = 1035 kg m~3 as fairly representative of the mean density of the ocean.

Most solutions adopt pw = 1025 kg m~3, which is more representative of the density of surface water.

The density difference of 1% is significant, given that the fundamental discrepancy seen in Figure 2 is

about 4%.

The "correct" values of the constants k-2 and k'2 are less clearcut. The 1996 conventions of the

International Earth Rotation Service (McCarthy 1996, p.43) suggest an elastic value for kt of 0.29801

but an anelastic value of 0.30102 — z'0.00130 (which was adopted by Schwintzer et al. 1999). Other

published values appear to vary by roughly ± 0.004. For consistency with the altimeter solutions

and five of the six tracking solutions, we adopt the k^ Love number of Wahr (1981): 0.302. By the

Saito-Molodensky relationship, this and hi = 0.609 implies k'2 = —0.307. Some other published (real)

values for k'2 are: -0.3075 (Farrell 1972), -0.3035 (Zschau 1978), -0.310 (Lambeck 1988), -0.309

(Pagiatakis 1990), -0.303 (Han & Wahr 1995). The scatter suggests that the error in our adopted k'2

is unlikely to exceed 1%. From (17) a 1% error in k'2 induces an error in D22 of about 0.4%. Errors in

fo affect the out-of-phase component D sin ty hardly at all. They do, however, induce potentially large

errors in the in-phase component, which is relevant for e' (see below).

The radii factors R\,Rz in (17) are somewhat murky (partly owing to our insistence on using a

spherical earth). Fortunately, they are also less crucial. We take RI = R<z = a, the mean radius of

the earth, as being the most physically consistent radius to describe the tidally varying mass distribu-

tion. Christodoulidis et al. (1988, p. 6217 and 6230) write that they adopt the same convention, but

examination of the Geodyn computer codes reveals that the factor (Rt/r) is always equivalent to the

identical factor used for the static Stokes coefficients, and these are nearly always taken as (ae/r)

where ae is the the mean equatorial radius.

The other orbit groups apparently follow Eanes et al. (1983) — as do the IERS conventions — by

expressing the ocean tide potential as

where M is the mass of the earth and ge = 9.7803 m s~2 is the acceleration of gravity at the equator.

Comparison of (17) and (18) shows that they are equivalent only if RI = GM/(geae) = 6390 km.

A final additional complication arises from the use of a complex k^ Love number in the GRIM5

solution. We must adjust their reported (D,i/>) estimates to ones that assume an elastic body tide,

consistent with the theory worked out in Section 3 above. To do this, we construct two expressions
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for the secondary potential $5 as in Eq. (9), identical but for the Love number. Letting subscript 1O'

denote the original tidal estimates and Love number and 'N' the new, we have

£>£e-< = D^e-^o + (ko - kN)H [«(1 + k')} ~l. (19)

For the GRIM5 Love number, the tidal coefficients must be incremented as follows-

AD cost/;: —0.106cm

A£>sinV>- 0.136 cm

Only the GRIM5 solution requires such an adjustment. The other solutions in Table 2 use the real

Love number of Wahr (1981) adopted here.

The tidal coefficients (D, V>) from all tracking solutions have been accordingly adjusted to account

for the above inconsistencies in geophysical constants. That is, they have been adjusted so that the

potential U is of form (17) with pw = 1035, fc2 = 0.302, k'2 = -0.307, and #1 = R2 = a (the mean

radius). The adjusted coefficients appear in the final two columns of Table 2. Comparisons of the

original and adjusted coefficients show that the adjusted ones are internally more consistent, in addition

to being consistent with the theory adopted in Section 3.

As our adopted tracking solution we take the weighted mean of the six tabulated solutions. Thus,

for the out-of-phase component,

DT sin VT = 3.295 sin 128.69° = 2.572 ± 0.016 cm (20)

The error bar assumes the six solutions are independent (not strictly true), but it has been inflated to

allow for a possible 1% error in our adopted k'2 and 0.2% error in pw.

6 LUNAR ATMOSPHERIC TIDE COEFFICIENTS

The theory worked out in Section 3 allows for the effect of the lunar atmospheric tide. We require

coefficients E, x as employed in Eq. (8), similar to those in (1) but in terms of surface pressure

To our knowledge the most thorough (and still most recent) analysis and spherical harmonic de-

composition of the lunar air tide is that of Haurwitz & Cow ley (1969). Their decomposition was

performed on global tidal charts that they constructed by subjective interpolation of 104 station val-

ues where the lunar tide had previously been estimated from long time senes of barometric pressure

measurements. From their analysis one finds that over 90% of the variance of the tide is accounted

for by the main (2,2) westward propagating wave (see discussion by Platzman 1991); this wave has a

small phase lag of about half an hour relative to the local tidal potential. Platzman (1991) used these

data (plus similar coefficients for the ocean tide) to conclude that the lunar atmospheric tide dissipates

about 10 gigawatts of power.
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Haurwitz and Cowley tabulated spherical harmonic coefficients corresponding to normalized Leg-

endre functions. Converting to the unnormalized functions used here, we find

£ = 1.84 Pa, x = 14.8°. (21)

These coefficients correspond to the annual mean of M2.

7 TIDAL LAG, Q, AND DISSIPATION

The discrepancy between the altimeter and tracking solutions discussed in Sections 4 and 5 amount to

0.1 cm in the out-of-phase component Dsinip, far larger than the individual standard error estimates.

Given these solutions, we are now in position to estimate the body tide lag e and load tide lag e'

with Eq. (11). Before doing so, however, a rudimentary error analysis is needed; it will show that our

satellite estimates give useful observational constraints on e, but that they give no useful information

at all about e'.

7.1 Standard errors in phase lags

Consider Eq. (11), simplified by ignoring the atmospheric tide and the relatively small final term

involving h'. Taking the real components lead to

e' w ii^- (DT cos if - DA cos ̂ A] /(2.47 cm). (22)
K ^ '

This approximation for e' is equivalent to (15) for e. Given the standard errors in the altimeter and

tracking tide estimates, Eq. (22) implies that the standard error in the estimate of e' will be roughly

ffe/ = 0.913 x ^/(Q.0152 + 0.0162) = 1.1° (23)

This error estimate is actually too conservative, because it neglects errors in the adopted hi and fo

which do not affect the out-of-phase tidal estimates but could affect the in-phase ones. Nonetheless,

the uncertainty 1 1° is already so large that the estimate of e' can be of no geophysical interest. The

lag in k' is expected to be one, possibly two, orders of magnitude smaller than this error estimate.

Published model estimates of the lag in k' are, for example, 0.010° (Pagiatakis 1990) and 0 033°

(Zschau 1978). Zschau (1978) finds the lag e' to be significantly smaller than e.

A similar analysis for e gives cr£ = 0.047°. This is sufficiently small that the estimate of e is indeed

of interest. (The large difference in these two error limits stems from the fact that e' in (11) or (22) is

scaled by the small tidal coefficient Dsinifr, while e is not.) The large error in e' does imply that we

must examine a wide range of values to bound its effect on estimates of e.
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7.2 Estimated body-tide phase lag

Solving Eq. (11) for both tidal phase lags yields the estimates: e = 0.233°, e' = -1.14°. The latter

is geophysically implausible, but not unexpected given the large error limits for e'. If we solve (11)

for e as a function of e', we find e = 0.23°, 0 20°, 0.18°, when e' = -1°, 0°, +1°, respectively On

geophysical grounds, and noting previous model calculations that suggest e' <§C 1°, one must conclude

that the middle estimate is preferable. Our estimate of the body-tide lag is therefore

e = 0.204° ± 0.047°

The error limits already cover the range of values caused by our lack of knowledge of e'.

The air tide turns out to be marginally important, it causes a small 0.01° contribution to e. (Being

nearly in phase with the tidal potential, its contribution to e' is more important.)

The body tide lag implies an effective tidal Q of 280 with 1-cr error bounds of (230,360).

7.3 Body tide energy dissipation

The anelasticity that induces the lag e in the earth's body tide implies a certain loss of tidal energy

Platzman (1984) has shown that the energy dissipation rate in given by

P = 101.4 T W x A f e sine, (24)

which implies

P = 110 ± 25 GW.

For comparison this is 22 times smaller than the M% dissipation rate in the oceans (Cartwright & Ray

1991), but an order of magnitude greater than the rate in the atmosphere (Platzman 1991).

It is important to realize that this dissipation rate is for the body tide alone. There exists additional

solid-earth tidal dissipation caused by the ocean's load deformation. This depends on the lag in k'n for

all n, and thus also depends on all spherical harmonics of the ocean tide. Platzman (1984) estimated

this load-tide contribution to tidal dissipation and concluded that it is an order of magnitude smaller

than the dissipation in the body tide. His results, of course, are dependent on his adopted k'n. The

results of our paper cannot contribute to this discussion; they apply only to the body tide.

7.4 Corrected oceanic coefficients

The ocean tide coefficients of Table 1 are the result of correcting T/P altimetry by an elastic model of

the body tide. It is worthwhile to examine the magnitude of this error, given our estimate of e, and if

necessary correct these coefficients to more accurately represent the pure ocean tide The error is the

term A£b from (10), which is
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AC& = hH (e~ie - l) ss -ihHf. = -i 0.0173 cm. (25)

The error is almost completely imaginary and amounts to about half a percent. That is, the altimeter

coefficient Dsmij; should be reduced by 0.0173 cm. Therefore, a more accurate estimate of the true

ocean tide may be had by replacing the altimetric esimate of Eq. (16) by

Ds'mijj = 3.206 sin 130.012° = 2.455 ±0.015cm. (26)

Of course, a similar exercise can be done for the tracking estimates, for which the adjustment will be

significantly larger But in that case, one should also correct for the air tide as well as the lagged body

tide. There will thus be an adjustment to both the in-phase and out-of-phase components.

This estimate of Dsinip for the ocean implies (Platzman 1984; Cartwright & Ray 1991) an

oceanic tidal dissipation of 2.421 ±0.015 TW. The tracking coefficients (20) imply a planetary dissi-

pation of 2 536 ± 0.016 TW. The difference of 115 GW is contributed by the solid tide and the air tide.

(These estimates, based on Platzman's Eqs. (10) and (26), again assume no significant dissipation in

the load tide, i e. that e' « 0.)

8 DISCUSSION

It is generally supposed that the earth's Q is weakly dependent on frequency; for example, Q ~ ua

where a is between 0.1 and 0.3 (Anderson & Minster 1979). It is conceivable that this simple form

holds over a frequency range of many decades, although Ivins & Sammis (1995) investigate a more

complicated frequency dependence resulting from a mixture or composite model of the mantle. The

empirical data for establishing Q(u) are not strong, so a precise estimate at the semidiurnal frequency

is of some value.

Table 3 gathers together a number of model and observational estimates of the earth's semidiurnal

Q. Estimates such as those of Wahr & Bergen (1986) adopt Earth models deduced primarily from

seismic and free-oscillation data, along with some WQ frequency dependence. Both tabulated Earth

models in Table 3 agree well with our esimates, with the bounds given by Wahr & Bergen (1986)

considerably tightened.

Three of the entries in Table 3 rely on estimates of the complex displacement Love number hi. (We

again assume that the lag in hi is not far from that in ki) Of most interest are those analyses employing

very long baseline interferometer (VLBI) data, which result in a direct geometrical measurement of hi,

essentially by observing the vertical tidal motions at the VLBI stations The Herring-Dong estimate

implies an e that is more than double ours, although with an admittedly large uncertainty. The VLBI

data are sensitive to the entire solid tide, so the body tide is separated from the load tide by applying

ocean-loading corrections at all stations. The degree-2 part of the load tide correction bears directly on
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the accuracy on the h^ solution, and in this regard it is important to note that Herring & Dong (1994)

used the Schwiderski (1983) model, whose degree-2 term is fairly inaccurate according to our Figure

1. A simple calculation, based on the size of Schwiderski's error in Figure 1, suggests that the error in

the VLBI load tide would act to inflate the estimate of the phase in /i2- The more recent VLBI analysis

of Schuh & Haas (1998) used a more modern load-tide correction, and their results for e are consistent

with ours.

The one completely discrepant entry in Table 3 is that of Melchior (1989), who deduced a 0.38°

lag in the gravity tide from an analysis of Earth tide measurements at 292 stations. Notwithstanding

their inherently high precisions, gravimeter observations of tides are somewhat insensitive to a body

lag—the radial deformation of the surface partly cancels the gravity effect of redistributed mass—and

a lag e in the secondary tidal potential materializes as a gravity lag of only e/7.7 (Lambeck 1988,

p 579). Hence, Melchior's 0.38° lag implies e = 3°, or a solid-earth Q of only 20. (Zschau & Wang

(1986), using a depth-dependent anelastic model, calculate that the gravity lag is an even smaller

fraction of e, which would imply a gravity-inferred Q even smaller than 20.) The reasons for this

anomalous result are most likely calibration errors in the gravimeters (Baker et al. 1989) and possibly

poor ocean loading corrections (the Schwiderski model was used for all stations).

9 CONCLUSIONS

By themselves neither satellite tracking data nor satellite altimeter data can distinguish an earth-tide

lag from an ocean-tide lag. In combination, however, they may do so, if each is sufficiently precise. For

M-2 we find the lag in the earth's body tide to be 0.204° ± 0.047°. This represents so far the most direct

and most precise determination of the effect of the earth's anelastic dispersion at half-daily periods. It

stems from marked advances in both tracking and altimeter estimates, as Figures 1 and 2 make clear.

No comparably useful information about the lag in the load tide could be obtained

Eventually one expects satellite geodetic constraints on anelasticity at a number of tidal periods

This has been accomplished for the 18.6-year tide, under the reasonable assumption that the ocean

tide is in equilibrium with the generating potential and has no out-of-phase component (Eanes 1995).

Other long-period tides await improvements in the ocean models, especially in the data-sparse polar

oceans where the P$ function attains its maximum (e.g., Desai & Wahr, 1999) To some extent, the

far Southern Ocean is also a limiting factor for diurnal tides—they all display an intense Antarctic

Kelvin wave that noticeably contributes to Pj, the lunar tide Oi appears to hold the most promise for

the immediate future.
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Table 1. M2 spherical harmonic components from altimetry

Author

Ray, 1999

Egbert

Eanes

Le Provost et al., 1998

Solution

GOT99.2

TPXO.4a

CSR4.0

FES95.2

£>22' Cm

3.230

3.223

3.229

3.193

V>2~2

129.97°

129.99°

12941°

129 89°

cr.cm

0.013

Table 2. M2 ocean tide coefficients from satellite tracking analyses

Reported

Author

Lerch et al., 1992

Eanes

Eanes

Cheng

Lemoine et al., 1998

Schwmtzeretal.,1999

Solution

GEM-T3S

LLA96-1

LLA96-2

7/97

EGM96S

GRIM5-S1

Z>22, cm

3.31

3.322

3292

3.33

3.266

3.193

*&

128.9°

128.8°

128.8°

128.8°

128.2°

1289°

cr, cm

0.04

0.03

004

0.02

0.024

0.018

Pw

1031

1025

1025

1025

1031

1025

-k>2

0.310

0.3075

03075

0.3075

0.310

0.3142

*2

0.302

0.302

0302

0.302

0.302

.301-Z.0013

Adjusted

Dsmif)

2.563

2.578

2.555

2.583

2.554

2.580

— D cos i/j

2.069

2.073

2054

2.076

2.010

2.077

Tabulated entries for Love numbers and seawater density are those used in original solutions. "Adjusted" coeffi-

cients correspond to solutions with &2 = 0.302, k'2 = -0.307, pw = 1035 kgm~3.

Table 3. Estimates of earth's Q at semidiurnal penod

Authors Method

Wahr & Bergen, 1 986 Earth model QMU

lower bound

Buffett & Mathews*

upper bound

Earth model

Herring & Dong, 1994 VLBI

Schuh & Haas, 1998

Ray et al., 1995

Zschau, 1986

Melchior, 1989

This paper

* Quoted in McCarthy

VLBI

Topex + tide gauges

Chandler wobble

lower bound

upper bound

Gravimetry 0 38°lag

Satellites

(1996).

Love number e

fc2 = 0.3050 - z.0013 0.24°

0.3040-1.0006 011°

0.3170 - 1.0036 0 65°

k2 = 0 3010 - 1.0013 0 25°

h2 = .604 - i.OOS ± 002 0 47° ± 0.20°

hi = .600 - z.003 ± .001 0.29° ± 0. 10°

/i2 = 613 - i.OOO ± .007 0.00° ± 0.65°

0.21°

014°

026°

2.9°

0.20° ± 0.05°

Q

235

507

88

230

120

200

270

420

220

20

280

(85,210)

(150,300)

(230,360)
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Figure 1. Historical snapshots of our knowledge of the D^ > ̂ 22 coefficients of the M2 ocean tide. Open circles

represent estimates from satellite tracking data. Filled circles represent estimates from either hydrodynamic

models or satelllite altimeter data. Labels refer to the following authors (note that some tidal parameters are

extracted from Lambeck (1977) and may not appear in the original citation):

(a) B-M (Bogdanov & Magank 1967), C (Cazenave et al. 1977), E (Estes 1977), H (Hendershott 1972), P-A

(Pekens & Accad 1969) Z (Zahel 1970,1977).

(b) C-D (Cazenave & Daillet 1981), D (Daillet 1978), G-D (Goad & Douglas 1978), M (Moore 1987), P-H

(Parke & Hendershott 1982), S (Schwiderski 1983), W-M (Williamson & Marsh 1985).

(c) C (Cheng etal. 1990), C-R (Cartwnght & Ray 1991), G-D (Gendt & Dietrich 1988), G4 (Schwmtzer etal.

1991), P-H (Parke & Hendershott 1982), S (Schwiderski 1983), Tl (Chnstodouhdis et al. 1988), T2 (Marsh et

al 1990).

(d) E (Eanes, unpublished), R (Ray, unpublished), S-R (Schrama& Ray 1994, updated), T3 (Lerch etal 1992).

Figure 2. Estimates of the M2 ocean tide (2,2) coefficients from satellite tracking data (open circles) and T/P

altmeter data (closed circles) The data are extracted from Tables 1 and 2 The tracking estimates have been

adjusted for consistency as descnbed in Section 5.1. Both data types are based on strictly elastic models of the

solid tide
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Figure 2. Estimates of the Mj ocean tide (2,2) coefficients from satellite
tracking data (open circles) and T/P altmeter data (closed circles). The data
are extracted from Tables 1 and 2. The tracking estimates have been ad-
justed for consistency as described in Section 5 1 Both data types are based
on strictly elastic models of the solid tide.
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