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Introduction
Need of a geod:

Need of a geodynamo

@ Earth and many other celestial bodies possess a large-scale,
often variable magnetic field

@ Decay time 7 = L2/p
magnetic diffusivity n = ¢?/4nc, electrical conductivity o

@ Earth 7 = 20000 yr

@ Variability of geomagnetic field

@ Dynamo:uxB ~ j ~ B ~ u
Faraday = Ampere  Lorentz
motion of an electrical conductor in an 'inducing’ magnetic field
~ induction of electric current

@ Self-excited dynamo: inducing magnetic field created by the electric current
(Siemens 1867)
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Introduction

Need of a geodynamo
Homopolar dynamo
Geodynamo hyg

Homopolar dynamo

uxB

electromotive force uxB ~ electric current through wire loop
~ induced magnetic field reinforces applied magnetic field

self-excitation if rotation Q > 27xR/M is maintained
where R resistance, M inductance
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Introduction

Geodynamo hypothesis

@ Larmor (1919): Magnetic field of Earth and Sun maintained by self-excited
dynamo

@ Homogeneous dynamo (no wires in Earth core)
~ complex motion necessary

@ Kinematic (u prescribed, linear)
@ Dynamic (u determined by forces, including Lorentz force, non-linear)
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Basic electrodynamics

Pre-Maxwell theory

Maxwell equations: cgs system, vacuum, B=H,D = E
oB
ot ’

OE
chB:47rj+E, CVXE = — V-B=0, V-E=4na

Basic assumptions of MHD:

e U < c: system stationary on light travel time, no em waves
¢ high electrical conductivity: E determined by dB/dt, not by charges 1

cEzEmEzl£zE<<1 Eplaysminorrole:%zE—2<<1

L T B ¢T ¢ ’ em B?
oE/ot x ﬂ ~ EH ~ u—2 < 1, displacement current negligible
cVxB c¢cB/L Bc c2 ’

Pre-Maxwell equations:

0B

cVxB =4nj, cVXE = BT V-B=0
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Basic electrodynamics

Pre-Maxwell theory

Pre-Maxwell equations Galilei-covariant:
1
E’:E+Eu><B, B =B, j=j
Relation between j and E by Galilei-covariant Ohm’s law: j = oF’
in resting frame of reference, o electrical conductivity

1
j=oc(E+ EuxB)

Magnetohydrokinematics: Magnetohydrodynamics:

cVXB = 4rj additionally

CVXE = —@ Equation of motion

V.B—0 ot Equation of continuity
s 1 Equation of state

j=o(E+ EuxB) Energy equation
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Basic electrodynamics

Induction equation

Evolution of magnetic field

B .
6— = —cVXE = —cVx 1I_ lu><B = —-cVXx iV><B - 1u><B
ot o C dno c

2
= Vx(uxB) - Vx(4C—V><B) = Vx(uxB) -nVxVxB
o

, c? e
with n = o const magnetic diffusivity
o

induction, diffusion
Vx(uxB)=-BV-u+ (B-V)u-(u-V)B

expansion/contraction, shear/stretching, advection
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Basic electrodynamics

Alfven theorem

oB

ot = Vx(uxB)

Ideal conductor n =10

Magnetic flux through floating surface is constant :

Proof:

0=fV-BdV:fB-dF:fFB(t)-dF—fF,B(t)AdF’—Sch(t)dsxudt.

fF/B(H-dt)dF’—fFB(t)dF: fF[B(Hdr)—B(r)}-dF—gﬁcs.dsxudt
= dt( %»dF— SECB-dsxu) = dt(fo(uxB)-dF— ﬁB-dsxu)

= dt(sg uxB-ds —§ B-dsxu) =0
c c
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Basic electrodynamics
Alfven theorem
M

Alfven theorem

Frozen-in field lines
impression that magnetic field follows flow, but E = —uxB and VXE = —cdB/dt

% =Vx(uxB)=-BV-u+ (B-V)u-(u-V)B
(i) star contraction: B~ R2,p~ R3 ~ B ~p?®
Sun ~ white dwarf ~ neutron star: p [gecm™3]: 1 ~ 10 ~ 10"°
(ii) stretching of flux tube: - a=—9
Bd? = const, ld? = const ~ B ~ |
(iii) shear, differential rotation
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Basic electrodynamics

Differential rotation

0B,/0t = rsin6VvVQ-B,
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Pr theory
Basic electrodynamics Induction equation
eorem
Reynolds number and flux expulsion
Poloidal and toroidal magnetic fields

Magnetic Reynolds number

Dimensionless variables: length L, velocity ug, time L/ug

oB

ob UoL
at

Vx(uxB) - R;'VxVxB with R, =—
n

as combined parameter
laboratorium: R, <« 1, cosmos: R, > 1
induction for R, > 1, diffusion for R, < 1, e.g. for small L

example: flux expulsion from closed velocity fields
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Basic electrodynamics

Magnetic S oer and flux expulsion

Poloidal gnetic fields

Poloidal and toroidal magnetic fields

Spherical coordinates (r, 9, ¢)
Axisymmetric fields: 0/0¢ =0

B(r,9) = (B, By, B,)

V-B=0

B = B, + B; poloidal and toroidal magnetic field

B: = (0,0, B,) satisfies V-B; = 0

B, = (B, By,0) = VXA with A = (0,0, A,) satisfies V-B, =0
_ 1 (8r sindA, _8r sindA, 0)
rsindg rod -’ or

By

axisymmetric magnetic field determined by the two scalars: rsin#A, and B,

Dieter Schmitt Geomagnetic Dynamo Theory



P
Basic electrodynamics Ini

Alfven the:

Magn: ds number and flux expulsion

Poloidal and toroidal magnetic fields

Poloidal and toroidal magnetic fields

Axisymmetric fields:

. C c
I = 4 41
rsingA, = const : field lines of poloidal field in meridional plane

VXxBp, J,=-—-VXB;

field lines of B; are circles around symmetry axis

Non-axisymmetric fields:

B =B, + B; = VXVX(Pr)+ Vx(Tr) = =Vx(rxVP) —rxVT
r=(r,0,0), P(r,%,¢) and T(r,9,¢) defining scalars

. c . c
V-B=0, j;= ZTVXB,J sy = 4_7rVXBt
r-B; =0 field lines of the toroidal field lie on spheres, no r component
B, has in general all three components

Dieter Schmitt Geomagnetic Dynamo Theory



Kinematic, turbulent dynamos

Cowling’s theorem
(Cowling 1934)

Axisymmetric magnetic fields can not be maintained by a dynamo.
Sketch of proof:

@ electric currents as sources of the magnetic field only in finite space
@ field line F = 0 along axis closes at infinity
@ field lines on circular tori whose cross section are the lines F = const

Y F=o0 z

/ F = const

grad F=0
orBp=0

O-type
neutral point

O-type neutral line
s

@ axisymmetry: closed neutral line

@ around neutral line is VxB # 0 ~ j, # 0, but there is no source of j,:
E, = 0 because of axisymmetry and (uxB), = 0 on neutral line for finite u
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Antidynamo theorems
Pa
Kinematic, turbulent dynamos

Cowling’s theorem

Formal proof

Consider vicinity of neutral line, assume axisymmetry

9§Bdl SEBdI fVXBdf_—f df——flﬁ;ldf

4 dnor
mfluprp|df< e fupodf< CaupmaxfB,,df

integration circle of radius &

4no 2no
By2ne < ?Up,maprﬂ'Ez or 1< ?Up,maxt‘?

g—=0 ~ Upmax = o

contradiction
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Kinematic, turbulent dynamos

Toroidal theorems

Toroidal velocity theorem (Elsasser 1947, Bullard & Gellman 1954)

A toroidal motion in a spherical conductor can not maintain a magnetic
field by dynamo action.

Sketch of proof:

%(r-B) =nV3(r-B) for ru=0

~ rB—-0 for t>co n P>0~T->0

Toroidal field theorem / Invisible dynamo theorem (Kaiser et al. 1994)

A purely toroidal magnetic field can not be maintained by a dynamo.
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nvection
Kinematic, turbulent dynamos

Parker’s helical convection

velocity u
y (b)

vorticity w = Vxu

helicity H=u-w

(©)
«—
J
B
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Kinematic, turbulent dynamos Mean-field theory

Mean-field theory

Statistical consideration of turbulent helical convection on mean magnetic field
(Steenbeck, Krause and Réadler 1966)

B
aa_t = Vx(uxB) -nVxVxB
u=u+u, B=B+B Reynolds rules for averages
oB

5= Vx(uxB + &) - nVxVxB
& = wxB’ mean electromotive force

oB’ _ -
e Vx(uxB' + u'xB+ G) —nVxVxB’

G = U'xXB’ —uwxB’ usually neglected, FOSA = SOCA
B’ linear, homogeneous functional of B
approximation of scale separation: B’ depends on B only in small surrounding

Taylor expansion: (u'xB’) = @B + BBk /0x; + . ..

i
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Kinematic, turbulent dynamos Mean-field theory

Mean-field theory

(uxB’), = ;B + BBy /ox; + ..
;i and Bjx depend on u’

homogeneous, isotropic U': ajj = adj , Bjx = —Pejk then
u'xB =aB —,BVXE

Ohm’'s law: j = o(E + (uxB)/c)

j=0c(E+ (uxB)/c + (aB -BVxB)/c) and cVxB = 4rj
j = 0ei(E + (UxB)/c + aB/c)

0B

E = VX(EXE + Q’E) - T]effVXVXE with ner =n+ 8

Two effects:
(1) a — effect: j=oesaB/c
(2) turbulent diffusivity: B> n, net=B8=nr

Dieter Schmitt Geomagnetic Dynamo Theory



Kinematic, turbulent dynamos

Sketch of dependence of a and Bonu

oB’
ot
simplifying assumptions: G = 0, u’ incompressible, isotropic, u=0, =0
t
o  —
B, = —(u;Bg)dr + By (t
K fto EkimEmrs 0X/( r s) T+ k( 0)
6kr615 - 5ks6lr

= Vx(uxB' + u'xB + G) - nVxVxB’

Bu 0B, Ou— oB
& = (U'xB'Y, e,,k t)[f kB, u ax,l _ a_xin _ u;a—xlk)dr+ B,’((to)]>
6u B
_g,,kf[ u(t) k >B, < () >6 k]dr
fo

~ w ~ ,B
, , 11—, 1—, 1 5.,
isotropic turbulence: @ = —EU/'VXU/T = —§Hr and B = §U T
H helicity , v correlation time
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Kinematic, turbulent dynamos

Mean-field coefficients
Me: dynamos

Mean-field coefficients derived from a MHD geodynamo simulation

a a
" Max: 544 9 Max : 33.02 Max: 411 ﬁw

Min : -5.44

. a
Max: 8.66 pp

Max: 217 ) Max : 13.23 e Max : 13.92 dp Max: 2.44 ) Max : 2.23 p Max: 351 dp

Min : -1.9; Min :-13.2 Min :-27.2 Min : -1.46 Min : -3.51

(Schrinner et al. 2007)
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Kinematic, turbulent dynamos

Mean-field dynamos

oB _ = = —
Dynamo equation: e Vx(uxB + aB - nrVxB)
e spherical coordinates, axisymmetry
eu=(0,0,Q(r,9)rsind)
e B=(0,0,B(r,9,1)) + Vx(0,0,A(r, 9, 1))

o, grad Q
oB . 2 2
o =rsin®(VxA)-VQ - aViA +n7ViB /\
OA B B
=7 = oBmViA with V5= V2~ (rsin®)? J’\/ !
rigid rotation has no effect o

no dynamo ifa =0

a-term  ap > 1 a?-dynamo with dynamo number R?2
VQ-term ~ |[VQIL2 <1 af-dynamo with dynamo number R, Rq

Dieter Schmitt Geomagnetic Dynamo Theory



Kinematic, turbulent dynamos

Mean-field dynamos

Sketch of an a2 dynamo

(& out
&) in
poloidal field toroidal field by poloidal field toroidal field by
differential rotation; by a-effect  differential rotation;
02/or <0 electric currents electric currents
a ~ cosf by a-effect by a-effect

periodically alternating field, here antisymmetric with respect to equator
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Kinematic, turbulent dynamos

Sketch of an a? dynamo

stationary field, here antisymmetric with respect to equator
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Equanons and paramelers

Magnetohydrodynamical dynamos

MHD equations of rotating fluids in non-dimensional form

Navier-Stokes equation including Coriolis and Lorentz forces

o 1
E a—+uVu Viu +22xu+VI‘I:RaLT+—(VxB)xB
ot ro Pm

Inertia  Viscosity Coriolis Buoyancy Lorentz

Induction equation
0B
at

|

= Vx(uxB) - P—VxVxB

Induction Diffusion

Energy equation

aT
— 4+ uVT=—V3T
ot e Pr +Q

|

Incompressibility and divergence-free magnetic field

Vu=0, V-B=0
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Magnetohydrodynamical dynamos

Non-dimensional parameters

Control parameters (Input)

Parameter Definition Force balance Model value Earth value
Rayleigh number Ra = agoATd/v) buoyancy/diffusivity 1 —50Rac; > Ragi
Ekman number E = v/Qd? viscosity/Coriolis 106 -10* 107
Prandtl number Pr=v/k viscosity/thermal diff. 2-1072 -10% 0.1 -1
Magnetic Prandtl  Pm = v/n viscosity/magn. diff. 10~' —=10®  10®-107°
Parameter Definition Force balance Model value Earth value
Elsasser number A = B?/upnQ  Lorentz/Coriolis 0.1 —100 0.1-10
Reynolds number Re = ud/v inertia/viscosity < 500 108 — 10°
Magnetic Reynolds Rm = ud/n induction/magn. diff. 50 — 10° 102 — 10°
Rossby number Ro = u/Qd inertia/Coriolis 3-10*-102 107 -10°®

Earth core values: d ~ 2:10°m, u~ 2-10*ms™, v ~ 10°® m?s™!
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Magnetohydrodynamical dynamos

Proudman-Taylor theorem

Non-magnetic hydrodynamics in rapidly rotating system
E<«x1, Ro<x1: Vviscosityandinertia small
balance between Coriolis force and pressure gradient

-Vp =20Qxu, Vx: (QVu=0

ou L . . . .
a7 0 motion independent along axis of rotation, geostrophic motion

(Proudman 1916, Taylor 1921)

Ekman layer:

At fixed boundary u = 0, violation of P.-T. theorem necessary for motion
close to boundary allow viscous stresses vV2u for gradients of u in z-direction
Ekman layer of thickness 6, ~ E'/2L ~ 0.2 m for Earth core
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rotating sphere
traint

Magnetohydrodynamical dynamos

inside tangent cylinder: g || 2:
Coriolis force opposes convection
outside tangent cylinder:
P.-T. theorem leads to columnar convection cells
exp(imy — wt) dependence at onset of convection,
2m columns which drift in ¢-direction
inclined outer boundary violates Proudman-Taylor theorem
~ columns close to tangent cylinder around inner core
inclined boundaries, Ekman pumping and inhomogeneous thermal buoyancy
lead to secondary circulation along convection columns:
poleward in columns with w, < 0, equatorward in columns with w, > 0
~ negative helicity north of the equator and positive one south

Dieter Schmitt Geomagnetic Dynamo Theory



w;>0and <0 Isosurfaces of positive (red)
cyclones / anticyclones and negative (blue) vorticity w,
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Magnetohydrodynamical dynamos

Taylor’s constraint

20Qxu = -Vp+pg+ (VxB)xB/4xr magnetostrophic regime
V.u=0, p=const; Q=wpe,

Consider g-component and integrate over cylindrical surface C(s)
op/de = 0 after integration over ¢, g in meridional plane

2pr u-ds=— ((VxB)xB),ds =
C(s)

f ((VxB)xB)wds:O (Taylor 1963)
C(s)

net torque by Lorentz force on any cylinder || 2 vanishes
B not necessarily small, but positive and negative parts of the integrand
cancelling each other out

violation by viscosity in Ekman boundary layers ~ torsional oscillations
around Taylor state
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A simple model

pret:

Geodynamo simulations

Benchmark dynamo

Ra =10°=18Rayy, E =103,

radial magnetic field radial velocity field axisymmetric axisymmetric
at outer radius atr = 0.83r magnetic field flow

(Christensen et al. 2001)
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Geodynamo simulations

Conversion of toroidal field into poI0|daI field

(Olson et-al. 1999)
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As
Interpretation
Ad els

Geodynamo simulations

Generation of toroidal field from poloidal field

N W

/ " SN
\ "
| \
\\ i fi \\
\M \ s .
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A simple model
Interpretation
Advanced models
Reversals
Geodynamo simulations Power requirement

Field line bundle in the benchmark dynamo

(cf Aubert)
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Geodynamo simulations

Strongly driven dynamo model

Ra =1.2x10® =42Ra,y, E=3x10"°, Pr=1, Pm=25

radial magnetic field radial velocity field axisymmetric axisymmetric
at outer radius atr = 0.93r magnetic field flow

(Christensen et al. 2001)
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field at the CMB

Geodynamo simulations

Comparison of the radial magnetic

Full numerical
simulation

"-:’1‘?;.“(:-‘..%'5 X
L o
\S C“ = ?2‘.‘\ (@

Reversing dynamo at
E =3-10"*, Ra = 26 Ragy, Pm =3, Pr =1
(Christensen & Wicht 2007)

GUFM model
(Jackson et al. 2000)

Spectrally filtered
E =3-10"%, Ra = 42 Ragt, Pm =1, Pr=1
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A simple model

£ Interpretation
Kinematic, turbulent dynamos Advanced models
Magnetohydrodynamical dynamos Reversals
Geodynamo simulations Power requirement

Dynamical Magnetic Field Line Imaging / Movie 2

mag. time 16837587

(Aubert et al. 2008)
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A simple model
Interpretation
Advanced models
REVEIEET
Geodynamo simulations Power requirement

Reversals

500 years before midpoint midpoint 500 years after midpoint

(Glatzmaier and Roberts 1995)
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Introduction

Basic electrodynamics

Kinematic, turbulent dynamos
Magnetohydrodynamical dynamos
Geodynamo simulations

Reversals

Dieter Schmitt

A simple model
Interpretation
Advanced models
REVEIEET

Power requirement
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Geodynamo simulations Power requirement

Power requirement of the geodynamo

@ Dynamo converts thermal and gravitational energy into magnetic energy

@ Power requirement for geodynamo set by its ohmic losses

o Difficult to estimate: 0.1 —5 TW ~ 0.3 — 10% Earth’s surface heat flow

@ Recent estimate from numerical and laboratory dynamos by extrapolating
the magnetic dissipation time for realistic values of the control parameters:
0.2 — 0.5 TW (Christensen and Tilgner 2004)

@ Important for thermal budget and evolution of the inner core

@ Thermal convection thermodynamically inefficient, compositional
convection associated with core cooling

@ High heat flow leads to rapid growth of the inner core and low age < 1 Gyr

@ Low power requirement estimated by Christensen and Tilgner (2004) is
consistent with an inner core as old as 3.5 Gyr
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