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Need of a geodynamo

Earth and many other celestial bodies possess a large-scale,
often variable magnetic field

Decay time τ = L2/η
magnetic diffusivity η = c2/4πσ, electrical conductivity σ

Earth τ ≈ 20 000 yr

Variability of geomagnetic field

Dynamo: u×B y j y B y u
Faraday Ampere Lorentz

motion of an electrical conductor in an ’inducing’ magnetic field
y induction of electric current

Self-excited dynamo: inducing magnetic field created by the electric current
(Siemens 1867)
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Homopolar dynamo

uxB

u

B

electromotive force u×B y electric current through wire loop
y induced magnetic field reinforces applied magnetic field

self-excitation if rotation Ω > 2πR/M is maintained
where R resistance, M inductance
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Geodynamo hypothesis

Larmor (1919): Magnetic field of Earth and Sun maintained by self-excited
dynamo

Homogeneous dynamo (no wires in Earth core)
y complex motion necessary

Kinematic (u prescribed, linear)

Dynamic (u determined by forces, including Lorentz force, non-linear)
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Pre-Maxwell theory

Maxwell equations: cgs system, vacuum, B = H, D = E

c∇×B = 4πj +
∂E
∂t
, c∇×E = −

∂B
∂t
, ∇·B = 0 , ∇·E = 4πλ

Basic assumptions of MHD:

• u � c: system stationary on light travel time, no em waves
• high electrical conductivity: E determined by ∂B/∂t , not by charges λ

c
E
L
≈

B
T
y

E
B
≈

1
c

L
T
≈

u
c
� 1 , E plays minor role :

eel

em
≈

E2

B2
� 1

∂E/∂t
c∇×B

≈
E/T
cB/L

≈
E
B

u
c
≈

u2

c2
� 1 , displacement current negligible

Pre-Maxwell equations:

c∇×B = 4πj , c∇×E = −
∂B
∂t
, ∇·B = 0
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Pre-Maxwell theory

Pre-Maxwell equations Galilei-covariant:

E′ = E +
1
c

u×B , B′ = B , j′ = j

Relation between j and E by Galilei-covariant j′ = σE′

in resting frame of reference, σ electrical conductivity

j = σ(E +
1
c

u×B)

Ohm’s law:

Magnetohydrokinematics:

c∇×B = 4πj

c∇×E = −
∂B
∂t

∇·B = 0

j = σ(E +
1
c

u×B)

Magnetohydrodynamics:

additionally

Equation of motion
Equation of continuity
Equation of state
Energy equation
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Induction equation

Evolution of magnetic field

∂B
∂t

= −c∇×E = −c∇×
(

j
σ
−

1
c

u×B
)
= −c∇×

(
c

4πσ
∇×B −

1
c

u×B
)

= ∇×(u×B) − ∇×

(
c2

4πσ
∇×B

)
= ∇×(u×B) − η∇×∇×B

with η =
c2

4πσ
= const magnetic diffusivity

induction, diffusion

∇×(u×B) = −B ∇·u + (B ·∇)u − (u ·∇)B

expansion/contraction, shear/stretching, advection
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Alfven theorem

Ideal conductor η = 0 :
∂B
∂t

= ∇×(u×B)

Magnetic flux through floating surface is constant :
d
dt

∫
F

B ·dF = 0

Proof:

0 =

∫
∇·BdV =

∫
B ·dF =

∫
F
B(t)·dF −

∫
F′

B(t)·dF ′ −
∮

C
B(t)·ds×udt ,∫

F′
B(t+dt)·dF ′ −

∫
F
B(t)·dF =

∫
F

{
B(t+dt) − B(t)

}
·dF −

∮
C

B ·ds×udt

= dt
(∫
∂B
∂t
·dF −

∮
C
B ·ds×u

)
= dt

(∫
∇×(u×B)·dF −

∮
C
B ·ds×u

)
= dt

(∮
C

u×B ·ds −
∮

C
B ·ds×u

)
= 0
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Alfven theorem

Frozen-in field lines
impression that magnetic field follows flow, but E = −u×B and ∇×E = −c∂B/∂t

∂B
∂t

= ∇×(u×B) = −B ∇·u + (B ·∇)u − (u ·∇)B

(i) star contraction: B ∼ R−2, ρ ∼ R−3 y B ∼ ρ2/3

Suny white dwarfy neutron star: ρ [g cm−3]: 1y 106 y 1015

(ii) stretching of flux tube:
Bd2 = const, ld2 = consty B ∼ l

(iii) shear, differential rotation
Dieter Schmitt Geomagnetic Dynamo Theory
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Differential rotation

∂Bφ/∂t = r sin θ∇Ω·Bp
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Magnetic Reynolds number

Dimensionless variables: length L , velocity u0, time L/u0

∂B
∂t

= ∇×(u×B) − R−1
m ∇×∇×B with Rm =

u0L
η

as combined parameter

laboratorium: Rm � 1, cosmos: Rm � 1

induction for Rm � 1, diffusion for Rm � 1, e.g. for small L

example: flux expulsion from closed velocity fields
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Flux expulsion

(Weiss 1966)
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Poloidal and toroidal magnetic fields

Spherical coordinates (r , ϑ, ϕ)

Axisymmetric fields: ∂/∂ϕ = 0

B(r , ϑ) = (Br ,Bϑ,Bϕ)

∇·B = 0

B = Bp + B t poloidal and toroidal magnetic field

B t = (0, 0,Bϕ) satisfies ∇·B t = 0

Bp = (Br ,Bϑ, 0) = ∇×A with A = (0, 0,Aϕ) satisfies ∇·Bp = 0

Bp =
1

r sinϑ

(
∂r sinϑAϕ

r∂ϑ
,−
∂r sinϑAϕ
∂r

, 0
)

axisymmetric magnetic field determined by the two scalars: r sinϑAϕ and Bϕ
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Poloidal and toroidal magnetic fields

Axisymmetric fields:

jt =
c
4π
∇×Bp , jp =

c
4π
∇×B t

r sinϑAϕ = const : field lines of poloidal field in meridional plane

field lines of B t are circles around symmetry axis

Non-axisymmetric fields:

B = Bp + B t = ∇×∇×(Pr) + ∇×(Tr) = −∇×(r×∇P) − r×∇T

r = (r , 0, 0) , P(r , ϑ, ϕ) and T(r , ϑ, ϕ) defining scalars

∇·B = 0 , jt =
c
4π
∇×Bp , jp =

c
4π
∇×B t

r ·B t = 0 field lines of the toroidal field lie on spheres, no r component

Bp has in general all three components

Dieter Schmitt Geomagnetic Dynamo Theory
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Cowling’s theorem
(Cowling 1934)

Axisymmetric magnetic fields can not be maintained by a dynamo.

Sketch of proof:
electric currents as sources of the magnetic field only in finite space
field line F = 0 along axis closes at infinity
field lines on circular tori whose cross section are the lines F = const

z

s

F = const

grad F = 0
or B   = 0p

F = 0

O-type
neutral point

z

O-type neutral line

axisymmetry: closed neutral line
around neutral line is ∇×B , 0 y jϕ , 0, but there is no source of jϕ:
Eϕ = 0 because of axisymmetry and (u×B)ϕ = 0 on neutral line for finite u

Dieter Schmitt Geomagnetic Dynamo Theory
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Cowling’s theorem
Formal proof

Consider vicinity of neutral line, assume axisymmetry∮
Bpdl =

∮
B ·dl =

∫
∇×B df =

4π
c

∫
j ·df =

4π
c

∫
|jϕ|df

=
4πσ
c2

∫
|up×Bp |df ≤

4πσ
c2

∫
upBpdf ≤

4πσ
c2

up,max

∫
Bpdf

integration circle of radius ε

Bp2πε ≤
4πσ
c2

up,maxBpπε
2 or 1 ≤

2πσ
c2

up,maxε

ε→ 0 y up,max → ∞

contradiction
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Toroidal theorems

Toroidal velocity theorem (Elsasser 1947, Bullard & Gellman 1954)

A toroidal motion in a spherical conductor can not maintain a magnetic
field by dynamo action.

Sketch of proof:
d
dt

(r ·B) = η∇2(r ·B) for r ·u = 0

y r ·B → 0 for t → ∞ y P → 0 y T → 0

Toroidal field theorem / Invisible dynamo theorem (Kaiser et al. 1994)

A purely toroidal magnetic field can not be maintained by a dynamo.

Dieter Schmitt Geomagnetic Dynamo Theory
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Parker’s helical convection

(Parker 1955)

velocity u

vorticity ω = ∇×u

helicity H = u ·ω

Dieter Schmitt Geomagnetic Dynamo Theory
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Mean-field theory

Statistical consideration of turbulent helical convection on mean magnetic field
(Steenbeck, Krause and Rädler 1966)
∂B
∂t

= ∇×(u×B) − η∇×∇×B

u = u + u′ , B = B + B′ Reynolds rules for averages

∂B
∂t

= ∇×(u×B + E) − η∇×∇×B

E = u′×B′ mean electromotive force
∂B′

∂t
= ∇×(u×B′ + u′×B +G) − η∇×∇×B′

G = u′×B′ − u′×B′ usually neglected , FOSA = SOCA

B′ linear, homogeneous functional of B

approximation of scale separation : B′ depends on B only in small surrounding

Taylor expansion :
(
u′×B′

)
i
= αijB j + βijk∂Bk/∂xj + . . .

Dieter Schmitt Geomagnetic Dynamo Theory
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Mean-field theory

(
u′×B′

)
i
= αijB j + βijk∂Bk/∂xj + . . .

αij and βijk depend on u′

homogeneous, isotropic u′ : αij = αδij , βijk = −βεijk then

u′×B′ = αB − β∇×B

Ohm′s law : j = σ(E + (u×B)/c)

j = σ(E + (u×B)/c + (αB − β∇×B)/c) and c∇×B = 4πj

j = σeff(E + (u×B)/c + αB/c)

∂B
∂t

= ∇×(u×B + αB) − ηeff∇×∇×B with ηeff = η+ β

Two effects :

(1) α − effect : j = σeffαB/c

(2) turbulent diffusivity : β � η , ηeff = β = ηT

Dieter Schmitt Geomagnetic Dynamo Theory
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Sketch of dependence of α and β on u′

∂B′

∂t
= ∇×(u×B′ + u′×B +G) − η∇×∇×B′

simplifying assumptions : G = 0 , u′ incompressible, isotropic , u = 0 , η = 0

B ′k =

∫ t

t0
εklmεmrs︸   ︷︷   ︸

δkrδls − δksδlr

∂

∂xl
(u′rBs)dτ+ B ′k (t0)

Ei =
〈
u′×B′

〉
i = εijk

〈
u′j (t)

[ ∫ t

t0

(∂u′k
∂xl

B l + u′k
∂B l

∂xl
−
∂u′l
∂xl

Bk − u′l
∂Bk

∂xl

)
dτ+ B ′k (t0)

]〉
= εijk

∫ t

t0

[ 〈
u′j (t)

∂u′k (τ)

∂xl

〉
︸            ︷︷            ︸
y α

B l −

〈
u′j (t)u

′
l (τ)

〉
︸         ︷︷         ︸
y β

∂Bk

∂xl

]
dτ

isotropic turbulence : α = −
1
3

u′ ·∇×u′τ∗ = −
1
3

Hτ∗ and β =
1
3

u′2τ∗

H helicity , τ∗ correlation time
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Mean-field coefficients derived from a MHD geodynamo simulation

(Schrinner et al. 2007)
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Mean-field dynamos

Dynamo equation:
∂B
∂t

= ∇×(u×B + αB − ηT∇×B)

• spherical coordinates, axisymmetry

• u = (0, 0,Ω(r , ϑ)r sinϑ)

• B = (0, 0,B(r , ϑ, t)) + ∇×(0, 0,A(r , ϑ, t))

∂B
∂t

= r sinϑ(∇×A)·∇Ω − α∇2
1A + ηT∇

2
1B

∂A
∂t

= αB + ηT∇
2
1A with ∇2

1 = ∇2 − (r sinϑ)−2 B tBp

gradα , 

α

Ω

rigid rotation has no effect

no dynamo if α = 0
α−term
∇Ω−term

≈
α0

|∇Ω|L2

{
� 1 α2−dynamo with dynamo number R2

α

� 1 αΩ−dynamo with dynamo number RαRΩ

Dieter Schmitt Geomagnetic Dynamo Theory
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Sketch of an αΩ dynamo

out

in

B

αΒ

Ω Ω ΩΩ

poloidal field toroidal field by poloidal field toroidal field by
differential rotation; by α-effect differential rotation;

∂Ω/∂r < 0 electric currents electric currents
α ∼ cos θ by α-effect by α-effect

periodically alternating field, here antisymmetric with respect to equator
Dieter Schmitt Geomagnetic Dynamo Theory
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Sketch of an α2 dynamo

Bp

B

α B

t

tα

Bp Bp

stationary field, here antisymmetric with respect to equator
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MHD equations of rotating fluids in non-dimensional form

Navier-Stokes equation including Coriolis and Lorentz forces

E
(
∂u
∂t

+ u ·∇u − ∇2u
)
+ 2ẑ×u + ∇Π = Ra

r
r0

T +
1

Pm
(∇×B)×B

Inertia Viscosity Coriolis Buoyancy Lorentz

Induction equation

∂B
∂t

= ∇×(u×B) −
1

Pm
∇×∇×B

Induction Diffusion

Energy equation

∂T
∂t

+ u ·∇T =
1
Pr
∇

2T + Q

Incompressibility and divergence-free magnetic field

∇·u = 0 , ∇·B = 0

Dieter Schmitt Geomagnetic Dynamo Theory
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Non-dimensional parameters

Control parameters (Input)

Parameter Definition Force balance Model value Earth value
Rayleigh number Ra = αg0∆Td/νΩ buoyancy/diffusivity 1 − 50Racrit � Racrit

Ekman number E = ν/Ωd2 viscosity/Coriolis 10−6 − 10−4 10−14

Prandtl number Pr = ν/κ viscosity/thermal diff. 2·10−2 − 103 0.1 − 1
Magnetic Prandtl Pm = ν/η viscosity/magn. diff. 10−1 − 103 10−6 − 10−5

Diagnostic parameters (Output)

Parameter Definition Force balance Model value Earth value
Elsasser number Λ = B2/µρηΩ Lorentz/Coriolis 0.1 − 100 0.1 − 10
Reynolds number Re = ud/ν inertia/viscosity < 500 108 − 109

Magnetic Reynolds Rm = ud/η induction/magn. diff. 50 − 103 102 − 103

Rossby number Ro = u/Ωd inertia/Coriolis 3·10−4 − 10−2 10−7 − 10−6

Earth core values: d ≈ 2·105 m, u ≈ 2·10−4 m s−1, ν ≈ 10−6 m2s−1

Dieter Schmitt Geomagnetic Dynamo Theory
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Proudman-Taylor theorem

Non-magnetic hydrodynamics in rapidly rotating system

E � 1 , Ro � 1 : viscosity and inertia small

balance between Coriolis force and pressure gradient

−∇p = 2ρΩ×u , ∇× : (Ω·∇)u = 0

∂u
∂z

= 0 motion independent along axis of rotation, geostrophic motion

(Proudman 1916, Taylor 1921)

Ekman layer:

At fixed boundary u = 0, violation of P.-T. theorem necessary for motion

close to boundary allow viscous stresses ν∇2u for gradients of u in z-direction

Ekman layer of thickness δl ∼ E1/2L ∼ 0.2 m for Earth core

Dieter Schmitt Geomagnetic Dynamo Theory
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Convection in rotating spherical shell

inside tangent cylinder: g ‖ Ω:
Coriolis force opposes convection

outside tangent cylinder:
P.-T. theorem leads to columnar convection cells

exp(imϕ − ωt) dependence at onset of convection,
2m columns which drift in ϕ-direction

inclined outer boundary violates Proudman-Taylor theorem
y columns close to tangent cylinder around inner core

inclined boundaries, Ekman pumping and inhomogeneous thermal buoyancy
lead to secondary circulation along convection columns:
poleward in columns with ωz < 0, equatorward in columns with ωz > 0
y negative helicity north of the equator and positive one south

Dieter Schmitt Geomagnetic Dynamo Theory
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Convection in rotating spherical shell

ωz > 0 and < 0
cyclones / anticyclones

H < 0

H > 0

Isosurfaces of positive (red)
and negative (blue) vorticity ωz
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Taylor’s constraint
2ρΩ×u = −∇p + ρg + (∇×B)×B/4π magnetostrophic regime

∇·u = 0 , ρ = const ; Ω = ω0ez

Consider ϕ-component and integrate over cylindrical surface C(s)

∂p/∂ϕ = 0 after integration over ϕ, g in meridional plane

2ρΩ
∫

C(s)
u ·ds︸       ︷︷       ︸

= 0

=
1
4π

∫
C(s)

((∇×B)×B)ϕ ds

∫
C(s)

((∇×B)×B)ϕ ds = 0 (Taylor 1963)

net torque by Lorentz force on any cylinder ‖ Ω vanishes

B not necessarily small, but positive and negative parts of the integrand
cancelling each other out

violation by viscosity in Ekman boundary layersy torsional oscillations
around Taylor state

Hydromagnetic flow in planetary cores 199

3.3.3. Taylor’s constraint. The very low geophysical values ofE and Ro (see section 2.2)
suggest that viscous and inertial effects may be small. If we setE = Ro= 0 in (2.20), we
obtain

1z × V = −∇5− q RaT g + (∇×B)×B. (3.36)

This is called themagnetostrophic approximation. It has a fundamental consequence first
discovered by Taylor (1963). If we take theφ-component of (3.36)

Vs = −∂5
∂φ
+ ((∇×B)×B)φ (3.37)

and integrate it over the surface of the cylinderC(s) (see figure 7) of radiuss, coaxial with
the rotation axis, we obtain∫

C(s)

Vs dS =
∫
C(s)

((∇×B)×B)φ dS. (3.38)

The cylinderC(s) intersects the outer sphere (r = 1) at z = zT, zB wherezT = −zB =√
1− s2(= cosθ). The left-hand side of (3.38) is the net flow of fluid out of the cylindrical

surface. For an incompressible fluid, and with no flow into or out of the ends of the cylinder,
this must be zero, with the consequence that∫

C(s)

((∇×B)×B)φ dS = 0. (3.39)

This is Taylor’s constraintor Taylor’s condition.

Figure 7. The Taylor cylinderC(s), illustrated for the cases (a) where the cylinder intersects
the inner core, and (b) wheres > rib. The cylinder extends fromz = zT =

√
1− s2 to z = zB,

where (a)zB =
√
r2

ib − s2 and (b)zB = −zT. From Fearn (1994).

The system has the freedom to satisfy this constraint through a component of the
azimuthal flow that is otherwise undetermined. If we take the curl of (3.36) and use
∇ · V = 0, we obtain

−∂V
∂z
= q Ra(∇T × g)+∇× ((∇×B)×B). (3.40)
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Benchmark dynamo

Ra = 105 = 1.8 Racrit , E = 10−3 , Pr = 1 , Pm = 5
a) b) c) d)

radial magnetic field radial velocity field axisymmetric axisymmetric
at outer radius at r = 0.83r0 magnetic field flow

(Christensen et al. 2001)
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Conversion of toroidal field into poloidal field

a

b

c

(Olson et al. 1999)
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Generation of toroidal field from poloidal field

a

b

c

(Olson et al. 1999)
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Strongly driven dynamo model

Ra = 1.2×108 = 42 Racrit , E = 3×10−5 , Pr = 1 , Pm = 2.5
a) b) c) d)

radial magnetic field radial velocity field axisymmetric axisymmetric
at outer radius at r = 0.93r0 magnetic field flow

(Christensen et al. 2001)

Dieter Schmitt Geomagnetic Dynamo Theory



Introduction
Basic electrodynamics

Kinematic, turbulent dynamos
Magnetohydrodynamical dynamos

Geodynamo simulations

A simple model
Interpretation
Advanced models
Reversals
Power requirement

Comparison of the radial magnetic field at the CMB

a

b

c

d

a

b

c

d

GUFM model
(Jackson et al. 2000)

Spectrally filtered simulation at
E = 3·10−5, Ra = 42 Racrit, Pm = 1, Pr = 1

Full numerical
simulation

Reversing dynamo at
E = 3·10−4, Ra = 26 Racrit, Pm = 3, Pr = 1

(Christensen & Wicht 2007)
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Figure 5. Snapshots from (a): DMFI movie 1 of model C and (b): movie 2 of model T. Left-hand panels: top view. Right-hand panels: side view. The inner

(ICB) and outer (CMB) boundaries of the model are colour-coded with the radial magnetic field (a red patch denotes outwards oriented field). In addition, the

outer boundary is made selectively transparent, with a transparency level that is inversely proportional to the local radial magnetic field. Field lines are also

colour-coded in order to indicate ez-parallel (red) and antiparallel (blue) direction. The radial magnetic field as seen from the Earth’s surface is represented in

the upper-right inserts, in order to keep track of the current orientation and strength of the large-scale magnetic dipole. Colour maps for (a): ICB field from

−0.12 (blue) to 0.12 (red), in units of (ρμ)1/2�D, CMB field from −0.03 to 0.03, Earth’s surface field from −2 10−4 to 2 10−4. For (b): ICB field from −0.72

to 0.72, CMB field from −0.36 to 0.36, Earth’s surface field from −1.8 10−3 to 1.8 10−3.

vortices into columns elongated along the ez axis of rotation, due to

the Proudman–Taylor constraint. The sparse character of the mag-

netic energy distribution results from the tendency of field lines

to cluster at the edges of flow vortices due to magnetic field ex-

pulsion (Weiss 1966; Galloway & Weiss 1981). Since magnetic

field lines correlate well with the flow structures in our models,

we will subsequently visualize the magnetic field structure alone.

The supporting movies of this paper (see Fig. 1 for time window

and Figs 5–9 for extracts) present DMFI field lines, together with

radial magnetic flux patches at the inner boundary (which we will

refer to as ICB) and the selectively transparent outer boundary

(CMB). We will first introduce the concept of a magnetic vortex,

which is defined as a field line structure resulting from the inter-

action with a flow vortex. By providing illustrations of magnetic

cyclones and anticyclones, DMFI provides a dynamic, field-line

based visual confirmation of previously published dynamo mech-

anisms (Kageyama & Sato 1997; Olson et al. 1999; Sakuraba &

Kono 1999; Ishihara & Kida 2002), and allows the extension of

such descriptions to time-dependent, spatially complex dynamo

regimes.

3.1.1 Magnetic cyclones

A strong axial flow cyclone (red isosurface in Fig. 4) winds and

stretches field lines to form a magnetic cyclone. Fig. 6 relates DMFI

visualizations of magnetic cyclones, as displayed in Figs 4 and 5,

with a schematic view inspired by Olson et al. (1999). A mag-

netic cyclone can be identified by the anticlockwise motion of field

lines clustered close to the equator, moving jointly with fairly stable

high-latitude CMB flux patches concentrated above and below the

centre of the field line cluster. Model C (movie 1, Fig. 5a) exhibits

very large-scale magnetic cyclones (times 4.3617, 4.3811), which

suggest an axial vorticity distribution biased towards flow cyclones.

Inside these vortices, the uneven distribution of buoyancy along ez

creates a thermal wind secondary circulation (Olson et al. 1999),

which is represented in red on Fig. 6. This secondary circulation

concentrates CMB flux at high latitudes, giving rise to relatively

long-lived (several vortex turnovers) flux patches similar to those

found in geomagnetic field models. Simultaneously, close to the

equatorial plane, the secondary circulation concentrates field lines

into bundles and also pushes them towards the outer boundary, where

C© 2008 The Authors, GJI

Journal compilation C© 2008 RAS

(Aubert et al. 2008)
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Figure 12. The steps involved in event E2, a full reversal of the dipole axis

occurring at time 171.32 in movie 2 (model T).

equatorial field lines of inverse (red) polarity. In this context, faint

magnetic anticyclones producing poloidal field lines of both po-

larities can be observed, which do not have a net effect on the

regeneration of the axial dipole, which in turn collapses. The equa-

torial dipole component is also bound to collapse due to the in-

termittent character of the upwellings which maintain it. A low

amplitude multipolar state, therefore, takes place in the whole shell,

where again faint magnetic anticyclones of both polarities can be

seen at different locations (Fig. 11c). After time 168.71 the normal

polarity (blue) magnetic anticyclones take precedence, and regen-

erate an axial dipole in 0.2 magnetic diffusion times (Fig. 11d).

Event E2 starts with two equatorial magnetic upwellings, grow-

ing from ICB flux spots of opposite polarity, at the edges of adjacent

axial vortices (Fig. 12a). The blue upwelling feeds a normal polarity

(blue) magnetic anticyclone, while the red upwelling feeds an in-

verse polarity (red) magnetic anticyclone. At time 171.327 this com-

petition between normal and inverse structures is felt at the CMB, as

well as at the surface, through an axial quadrupole magnetic field.

As in event E1, the axial dipole is not efficiently maintained by this

configuration, leaving mostly equatorial field lines inside the shell,

maintained by two equatorial magnetic upwellings (Fig. 12b), with

slightly inverse (red) ez orientation. Also similar to event E1, a com-

petition between faint normal and inverse magnetic anticyclones can

be observed (Fig. 12c) until time 171.5 where inverse structures take

precedence and rebuild an axial dipole (Fig. 12d), thus completing

the reversal sequence. The DMFI sequence for event E2 highlights

the role of magnetic upwellings in a scenario which is broadly con-

sistent with that proposed by Sarson & Jones (1999).

In the smaller-scale model C, the influence of magnetic up-

wellings on the dipole latitude and amplitude is not as clear-cut as

in model T. Their appearance are, however, associated with tilting

of the dipole axis as seen from the Earth’s surface (see upper-right

inserts in movie 1). Thus, we argue that two essential ingredients

for the production of excursions and reversals in numerical dynamos

are the existence of magnetic upwellings and a multipolar ICB mag-

netic field. This agrees with the models of Wicht & Olson (2004),

in which the start of a reversal sequence was found to correlate with

upwelling events inside the tangent cylinder.

4 D I S C U S S I O N

Understanding the highly complex processes of magnetic field gen-

eration in the Earth’s core is greatly facilitated by Alfvén’s the-

orem and the frozen-flux approximation, provided one supplies

an imaging method which is adapted to the intrinsically 3-D and

time-dependent nature of the problem, and also takes into account

diffusive effects. The DMFI technique used in the present study aims

at achieving this goal, and highlights several magnetic structures:

magnetic anticyclones are found outside axial flow anticyclones,

and regenerate the axial dipole through the creation of magnetic

loops characteristic of an alpha-squared dynamo mechanism. Mag-

netic cyclones are found outside axial flow cyclones, and concentrate

the magnetic flux into bundles where significant Ohmic dissipation

takes place. Our description of magnetic vortices confirms and illus-

trates previously published mechanisms, as presented for instance by

Olson et al. (1999). By separating the influence of cyclones and anti-

cyclones, we extend these views to more complex cases where there

is a broken symmetry between cyclonic and anticyclonic motion.

Furthermore, we present the first field line dynamic descriptions of

magnetic upwellings, which are created by field line stretching and

advection inside flow upwellings.

Our models show that the magnetic structures are robust features

found at high (model T) as well as moderately low (model C) values

of the Ekman number. This suggests that they pertain to the Earth’s

core. Since we only have access to the radial component of the

magnetic field at the Earth’s CMB, our description of the magnetic

structure underlying CMB flux patches in the models is of particular

interest. Inside the tangent cylinder, short-lived CMB patches of

both polarities can be created by the expulsion of azimuthal flux

within a magnetic upwelling. These patches are quickly weakened

by the diverging flow on the top of the upwelling, therefore, they do

not last more than a vortex turnover, which is equivalent to 60–300 yr

in the Earth’s core (Aubert et al. 2007). The observation of a tangent

cylinder inverse flux patch in the present geomagnetic field (Olson

& Aurnou 1999; Jackson et al. 2000; Hulot et al. 2002), although it

is weakly constrained and not observed with all field regularizations

C© 2008 The Authors, GJI

Journal compilation C© 2008 RAS
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equatorial field lines of inverse (red) polarity. In this context, faint

magnetic anticyclones producing poloidal field lines of both po-

larities can be observed, which do not have a net effect on the

regeneration of the axial dipole, which in turn collapses. The equa-

torial dipole component is also bound to collapse due to the in-

termittent character of the upwellings which maintain it. A low

amplitude multipolar state, therefore, takes place in the whole shell,

where again faint magnetic anticyclones of both polarities can be

seen at different locations (Fig. 11c). After time 168.71 the normal

polarity (blue) magnetic anticyclones take precedence, and regen-

erate an axial dipole in 0.2 magnetic diffusion times (Fig. 11d).

Event E2 starts with two equatorial magnetic upwellings, grow-

ing from ICB flux spots of opposite polarity, at the edges of adjacent

axial vortices (Fig. 12a). The blue upwelling feeds a normal polarity

(blue) magnetic anticyclone, while the red upwelling feeds an in-

verse polarity (red) magnetic anticyclone. At time 171.327 this com-

petition between normal and inverse structures is felt at the CMB, as

well as at the surface, through an axial quadrupole magnetic field.

As in event E1, the axial dipole is not efficiently maintained by this

configuration, leaving mostly equatorial field lines inside the shell,

maintained by two equatorial magnetic upwellings (Fig. 12b), with

slightly inverse (red) ez orientation. Also similar to event E1, a com-

petition between faint normal and inverse magnetic anticyclones can

be observed (Fig. 12c) until time 171.5 where inverse structures take

precedence and rebuild an axial dipole (Fig. 12d), thus completing

the reversal sequence. The DMFI sequence for event E2 highlights

the role of magnetic upwellings in a scenario which is broadly con-

sistent with that proposed by Sarson & Jones (1999).

In the smaller-scale model C, the influence of magnetic up-

wellings on the dipole latitude and amplitude is not as clear-cut as

in model T. Their appearance are, however, associated with tilting

of the dipole axis as seen from the Earth’s surface (see upper-right

inserts in movie 1). Thus, we argue that two essential ingredients

for the production of excursions and reversals in numerical dynamos

are the existence of magnetic upwellings and a multipolar ICB mag-

netic field. This agrees with the models of Wicht & Olson (2004),

in which the start of a reversal sequence was found to correlate with

upwelling events inside the tangent cylinder.

4 D I S C U S S I O N

Understanding the highly complex processes of magnetic field gen-

eration in the Earth’s core is greatly facilitated by Alfvén’s the-

orem and the frozen-flux approximation, provided one supplies

an imaging method which is adapted to the intrinsically 3-D and

time-dependent nature of the problem, and also takes into account

diffusive effects. The DMFI technique used in the present study aims

at achieving this goal, and highlights several magnetic structures:

magnetic anticyclones are found outside axial flow anticyclones,

and regenerate the axial dipole through the creation of magnetic

loops characteristic of an alpha-squared dynamo mechanism. Mag-

netic cyclones are found outside axial flow cyclones, and concentrate

the magnetic flux into bundles where significant Ohmic dissipation

takes place. Our description of magnetic vortices confirms and illus-

trates previously published mechanisms, as presented for instance by

Olson et al. (1999). By separating the influence of cyclones and anti-

cyclones, we extend these views to more complex cases where there

is a broken symmetry between cyclonic and anticyclonic motion.

Furthermore, we present the first field line dynamic descriptions of

magnetic upwellings, which are created by field line stretching and

advection inside flow upwellings.

Our models show that the magnetic structures are robust features

found at high (model T) as well as moderately low (model C) values

of the Ekman number. This suggests that they pertain to the Earth’s

core. Since we only have access to the radial component of the

magnetic field at the Earth’s CMB, our description of the magnetic

structure underlying CMB flux patches in the models is of particular

interest. Inside the tangent cylinder, short-lived CMB patches of

both polarities can be created by the expulsion of azimuthal flux

within a magnetic upwelling. These patches are quickly weakened

by the diverging flow on the top of the upwelling, therefore, they do

not last more than a vortex turnover, which is equivalent to 60–300 yr

in the Earth’s core (Aubert et al. 2007). The observation of a tangent

cylinder inverse flux patch in the present geomagnetic field (Olson

& Aurnou 1999; Jackson et al. 2000; Hulot et al. 2002), although it

is weakly constrained and not observed with all field regularizations
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Power requirement of the geodynamo

Dynamo converts thermal and gravitational energy into magnetic energy

Power requirement for geodynamo set by its ohmic losses

Difficult to estimate: 0.1 − 5 TW ∼ 0.3 − 10% Earth’s surface heat flow

Recent estimate from numerical and laboratory dynamos by extrapolating
the magnetic dissipation time for realistic values of the control parameters:
0.2 − 0.5 TW (Christensen and Tilgner 2004)

Important for thermal budget and evolution of the inner core

Thermal convection thermodynamically inefficient, compositional
convection associated with core cooling

High heat flow leads to rapid growth of the inner core and low age ≤ 1 Gyr

Low power requirement estimated by Christensen and Tilgner (2004) is
consistent with an inner core as old as 3.5 Gyr
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