
Pythagoras, the metric tensor and relativity1

Pythagoras2 is regarded to be the first pure mathematician. His famous theorem, known
to every student, is the basis for a remarkable thread of geometry that leads directly to
Einstein’s3 Theory of Relativity.

1 Pythagoras’ Theorem

The sum of the squares of the lengths of the two normal sides of a right triangle equals the
square of the length of its hypoteneuse.
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Figure 1: A graphical proof of Pythagoras Theorem

Pythagoras developed the theorem in description of mapping in the plane geometry that
was extensively explored more than a century later by Euclid of Alexandria4. The simple
flat geometry that so nearly accords with the spatial geometry in which we live is called
Euclidean Geometry in recognition.

Algebraically, Pythagoras theorem describes the distance between two points in Euclidean
2- or 3-space. Consider 2 vectors ~r1 and ~r2, and let ~r3 = ~r2 − ~r1. Pythagoras theorem

1 c©Olivia Jensen, McGill University
2Pythagoras of Samos
3Albert Einstein
4Euclid of Alexandria
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Figure 2: Distance between two vectors

allows us to determine the length of the vector ~r3.

`{~r3} = |~r3| = |~r2 − ~r1|.

If the components of the prototypical vector ~r : [ rx, ry, rz ], then Pythagoras theorem
tells us that

`2{~r3} = r2
3x

+ r2
3y

+ r2
3z

,

= (r2x − r1x)
2 + (r2y − r1y)

2 + (r2y − r1y)
2.

While it might not look like a simplification of the description, let us rewrite this latter
form as

∆`2 = ∆x∆x + ∆y∆y = ∆z∆z

and then in linear algebraic form as

∆`2 =
[

∆x ∆y ∆z
]

•

 1 0 0
0 1 0
0 0 1

 •

 ∆x
∆y
∆z

 .

The 3 × 3 identity matrix in this form is the prototype of the metric, the “measurement
rule”, for calculating squared lengths via Pythagoras’ Theorem in a Euclidean 3−space. It
practically tells us how the spatial geometry is involved in length measurement. Here the
rule is extremely simple because of our choice of coordinates, Cartesian, and the geometry
of the space, Euclidean.

While it might not be clear, this form can be economically written in a tensor form:

∆`2 = δij∆xi∆xj

where, now ∆xi, ∆xj represent each of ∆x, ∆y, ∆z as necessary. Note the summation
is implied in accord with the Einstein convention. Written fully,

∆`2 =
∑

i=x,y,z

j=x,y,z

δij∆xi∆xj
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In this description, δij is the metric tensor of a Euclidean 3-space in Cartesian coordinates.
Under these special conditions, this rule holds globally; that is, we can measure the squared
distance, no matter how large, between any two vectors in a flat space. While it might
not be obvious without reminder, whatever orientation or origin we use for our coordinate
system, ∆` remains invariant. That is, whatever our perspective, the length of the vector
~r3 is seen to be the same.

We can extend this Pythagorean rule to hold in more general conditions where, for example,
space might only be flat locally. We let

d`2 = δijdxidxj.

If the space is still globally flat, we can integrate d` along a straight-line path from ~r1 to
~r2 to obtain ∆` as

∆` =
∫ ~r2

~r1

d` =
∫ ~r2

~r1

√
δijdxidxj.

If the space is not globally flat while still being locally flat, the shortest path from ~r1 to
~r2 may not be a simple straight line and so we would have to find the shortest path by an
extremal principle:

d∆`

d (path)
= 0.

An example of one such extremal path is that taken by a photon as it transits the universe.
This path is called the null geodesic path. Everywhere. locally, along that path, the photon
travels with its speed of light in a straight line. The photon always feels itself to be travelling
in a straight line but its straight line might look seriously curved to us from our relatively
static perspective as the photon is accelerated towards large masses. Remarkably, a photon
may take many paths of exactly equal “length” from a source to a detector – the effect is
seen as gravitational lensing5 when light is bent by strong gravitational fields.

1.1 Special relativity

Contributing an elegant geometrical description to Einstein’s development of Special Rela-
tivity theory, Lorentz and Minkowski introduced a non-Euclidean space: Lorentz-Minkowski
space. Using, still, Cartesian coordinates, the metric for this space is defined and ordered
as

ηµν =


−1 0 0 0

0 1 0 0
0 0 1 0
0 0 0 1

 .

The new dimension implicitly introduced relates to the passage of time; µ, ν take on the
directional components x0 = ct, x1 = x x2 = y and x3 = z using the conventional
numerical index to represent each coordinate and where, now, c is the constant speed of

5 Gravitational lensing; note the wispy halos centred on the massive galaxies.
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light in free space6. The differential squared interval is determined, then, as

ds2 = ηµνdxµdxν = −c2dt2 + dx2 + dy2 + dz2.

Note that eliminating the first row and first column of ηµν , we are left with the metric
tensor of a Euclidean 3−space. Lorentz-Minkowski space includes a “distance” scaling for
time as well.

Normally, in special relativity, a vector in the Lorentz-Minkowski 4−space-time is not con-
sidered to locate a position; it locates an event. An event has a position and a time. The
“distance” between events is called the interval.

The fundamental statement of Special Relativity from which all details of the theory de-
rive: The interval between two events in Lorentz-Minkowski space is invariant for all ob-
servers. That is, just as the distance between vectors in Euclidean space is constant for
all observers, whatever their origin place or orientation, the interval is seen to be the same
by all observers in Lorentz-Minkowski space, whatever their orientation, place or velocity.
Einstein’s grand theory of Gravitation, colloquially called General Relativity extended this
fundamental statement’s condition to also include ... whatever their acceleration whether
inertial or gravitational.

1.2 Einstein’s Gravitation – General Relativity

In General Relativity, the metric tensor can become almost arbitrarily complex. It is gen-
erally described as

gµν =


g00 g01 g02 g03

g10 g11 g12 g13

g20 g21 g22 g23

g30 g31 g32 g33

 .

Each of its elements depend upon place and the coordinate system employed in addressing
the place. The elements of the metric tensor include all information about the geometry at
place and time.

If one is not under relativistic accelerations, either inertial or gravitational, the metric tensor
of gravitation theory is typically not substantially different from that of empty Lorentz-
Minkowski space. One can often apply a perturbation theory in its description as

gµν = ηµν + hµν .

Where we stand on the surface of a non-rotating spherical Earth (which has far too little
mass to offer us a relativistic acceleration), using a coordinate system with the x3 =
z−coordinate oriented radially,

6 Now, in rationalizing the SI system of units, the speed of light in free space is defined to be exactly
299792458m s−1; the metre now is defined to be 1/299792458 the distance travelled by light in exactly
one second; the second is defined to be the duration of 9 192 631 770 periods of the radiation corresponding
to the transition between the two hyperfine levels of the ground state of the cesium 133 atom. The third
fundamental unit of the SI system of measures is the kilogram and it is still defined by the ”international
prototype” held at the Bureau International des Poids et Measures in Paris. The kilogram.
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hµν =



−2Φ
c2

√
2Φ3

c3

√
2Φ3

c3

√
2Φ3

c3
√

2Φ3

c3 −2Φ
c2

2Φ2

c4
2Φ2

c4
√

2Φ3

c3
2Φ2

c4 −2Φ
c2

2Φ2

c4
√

2Φ3

c3
2Φ2

c4
2Φ2

c4 −2Φ
c2


.

Here, Φ is the gravitational potential at the surface of the Earth

Φ(rs) =
−GM⊕

rs
.

The g00 element describes the slight, ∼ 2.6×10−5, temporal gravitational redshift relative
to r → ∞, due to the attraction of the Earth’s mass on photons and the g03 and g30

elements describe a slight spatial dilation of wavelengths in the x3, radial direction.

General relativistic gravitational waves as might be produced by supernoval explosion and
collapse or by massive stars or black holes in very close orbits produce temporal variations
in the purely spatial and off-diagonal elements of the metric tensor. These extremely small
temporal variations can be described as

hij(~r, t) ∼ hije
i(~k·~r−ωt)

where ~k is the propagation vector direction radially from the source. These waves travel
with the velocity of light. The perturbation metric of the geometric distortion of space as
the wave travels by has form

hµν(~r, t) =


0 0 0 0
0 0 h12 h13

0 h12 0 h23

0 h13 h23 0

 e−i(~k·~r−ωt).

The LIGO7 (Laser Interferometry Gravitational-Wave Observatory) has been constructed
at a cost of US$394 million to search for gravitational waves that might be caused by violent
astrophysical events. The experiment was initially designed for an eventual sensitivity of
|hij| ∼ 10−23 for frequencies of oscillations between about 1kHz and 10kHz. The first-
stage interferometers were built and calibration test runs completed during 6 years. Nothing
was detected! The “Advanced LIGO” upgrade was completed in September 2015 at a
further cost of US$620 million. It now approaches the design sensitivity ( |hij| ∼ 10−23)
for frequencies between 300Hz and 3kHz.8 The LIGO proponents expect to see between
1 and 3 events per year caused by neutron star and black hole binary systems and spin of
asymmetric neutron stars. LIGO announced detection of gravitational waves on February
11, 2016.

7LIGO Scientific Collaboration.
8 Gravitational wave spectrum
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