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The geomagnetic power spectrum
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S U M M A R Y
Combining CHAMP satellite magnetic measurements with aeromagnetic and marine magnetic
data, the global geomagnetic field has now been modelled to spherical harmonic degree 720. An
important tool in field modelling is the geomagnetic power spectrum. It allows the comparison
of field models estimated from different data sets and can be used to identify noise levels
and systematic errors. A correctly defined geomagnetic power spectrum is flat (white) for an
uncorrelated field, such as the Earth’s crustal magnetic field at long wavelengths. It can be
inferred from global spherical harmonic models as well as from regional grids. Marine and
aeromagnetic grids usually represent the anomaly of the total intensity of the magnetic field.
Appropriate corrections have to be applied in estimating the geomagnetic power spectrum
from such data. The comparison of global and regional spectra using a consistently defined
azimuthally averaged geomagnetic power spectrum facilitates quality control in field modelling
and should provide new insights in magnetic anomaly interpretation.

Key words: Spatial analysis; Magnetic anomalies: modelling and interpretation; Satellite
magnetics.

I N T RO D U C T I O N

A new generation of low-orbiting magnetic field satellites provides
increasingly accurate measurements of the Earth’s magnetic field.
With the slowly decreasing altitude of the CHAMP satellite under
solar minimum conditions, the MF series of CHAMP crustal mag-
netic field models was gradually extended to spherical harmonic
degree 100 for the latest MF5 model (Maus et al. 2007a). A signifi-
cantly higher degree model was produced by combining MF5 with
the aeromagnetic and marine magnetic data holdings of the National
Geophysical Data Center (NGDC). In 2006 September, the NGDC-
720 model to SH degree 720 was released and made available
online at http://ngdc.noaa.gov/seg/EMM/emm.shtml as SH coeffi-
cients and software. Marine and aeromagnetic data have also been
directly compiled into World Magnetic Anomaly Maps (Hamoudi
et al. 2007; Hemant et al. 2007; Maus et al. 2007b). Their grids
have 3 arcmin resolution but are not available as spherical harmonic
expansions of the magnetic potential.

An interesting characteristic of the geomagnetic field is its vari-
ance as a function of spherical harmonic degree. As demonstrated
by Mauersberger (1956) and Lowes (1966), the total variance R
of the magnetic field can be broken up into a sum of individual
contributions R� of different SH degree �, given by

R� = (� + 1)

(
Re

r

)2�+4 �∑
m=−�

(
gm

�

)2
, (1)

where Re = 6371.2 is the geomagnetic reference radius and gm
�

are the Gauss coefficients of the field. The degree variance, some-
times called Mauersberger–Lowes spectrum, is shown in Fig. 1 for
some recent field models. Using degree variances inferred from a

Magsat field model, Langel & Estes (1982) discovered the ‘knee’ at
degree 15, separating the main magnetic field at low degrees from
the crustal magnetic field at high degrees. The characteristics of
core and crustal field variances of Earth and Mars were recently
summarized by Voorhies et al. (2002). Degree variances of the
Earth’s crustal magnetic field have also been predicted from statis-
tical models of the crustal magnetization (Jackson 1996; McLeod
1996). McLeod & Coleman (1980) derived the average power spec-
tra of magnetic field vector components on great circles from the
spherical harmonic coefficients of the magnetic potential. O’Brien
et al. (1999) inverted these relations to estimate global degree vari-
ances from vector component aeromagnetic survey lines over the
oceans.

With a new generation of highly accurate satellite magnetic mea-
surements, it has become increasingly clear that the degree variance
shows an awkward upward slope of the crustal field towards higher
degrees. If interpreted as a power spectrum, this would suggest that
geomagnetic field models were strongly contaminated by noise.
However, the degree variance is not a power spectrum in the usual
sense. As pointed out by Hipkin (2001), the degree variance slopes
upward for a spatially uncorrelated field. Interpreting degree vari-
ances as a spatial power spectrum (e.g. Lowes 1974) can, therefore,
lead to serious misinterpretation. As shown here, a correctly defined
geomagnetic power spectrum is flat for the long wavelength crustal
field. Conversely, the fact that the degree variance is almost flat at
the core–mantle boundary does not mean that the field is spatially
uncorrelated there.

Prior to the CHAMP satellite mission, a large spectral gap existed
between global satellite-based field models and regional magnetic
anomaly maps. Using degree variances as power spectra did not
create obvious problems. However with a closing spectral gap, it is
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Figure 1. Degree variances of some recent geomagnetic field models (Cain
et al. 1989; Sabaka et al. 2004). The upward slope above degree 15 should not
be interpreted as a noise contamination because the degree variance slopes
upward for a spatially uncorrelated field. A correctly defined geomagnetic
power spectrum has a flat crustal field spectrum (see Fig. 4).

important to have compatible definitions of the geomagnetic power
spectrum for global and regional data sets. Here, I provide a com-
plete derivation of the geomagnetic power spectrum for spherical
harmonic expansions and plane grids. This yields the appropriate
scaling factors, including multiples of the Earth radius Re, grid side
length L and number of grid cells n, to bring spherical and plane
spectra to a common power level. A complication arises because
regional grids usually represent the anomaly of the total intensity
rather than the vector of the magnetic field. While the total intensity
measurements do not completely determine the field vector, it is
shown here that the magnetic field spectrum can nevertheless be
estimated from such data. The usefulness of the new definitions is
demonstrated by comparing the global NGDC-720 spectrum with
the average corresponding spectra of local subgrids from NGDC’s
World Magnetic Anomaly Map (Maus et al. 2007b).

T H E O RY

The main challenge in defining a geomagnetic power spectrum is to
find the correct scale factors. The idea behind the following deriva-
tion is to first define the power in a coordinate-independent way, and
then decompose it into contributions from different wavelengths for
a specific coordinate system.

The internal magnetic field B on the surface of the Earth has an
expected value E{B (x 1, x 2)} at the location (x 1, x 2) and a variance

E
{
[B(x1, x2) − E{B(x1, x2)}]2

} = E
{
B(x1, x2)2

}− E{B(x1, x2)}2,

(2)

where all squares and multiplications of vectors are to be read as
scalar products. The quantity E{B (x 1, x 2)2} shall be referred to as
the power of the field. This power can be written as an integral over
the 2-D spectral density P(k 1, k 2) as

E{B(x1, x2)2} =
∫ ∞

−∞

∫ ∞

−∞
P(k1, k2) dk1 dk2 (3)

=
∫ ∞

0

∫ 2π

0
P(k cos α, k sin α) kdα dk, (4)

where k =
√

k2
1 + k2

2 is the wavenumber measured in radians per

kilometre, and α is the azimuth. In contrast to the wavenumber, the
azimuth depends on the orientation of the coordinate system.

There are several possibilities to define a spectral density P(k)
which is only a function of the wavenumber and independent of
the azimuth. However, to avoid misinterpretation, P(k) should be
defined in such a way that it is flat for a spatially uncorrelated ‘white
noise’ magnetic field W(x 1, x 2).

The autocorrelation function of a white noise magnetic field
W(x 1, x 2) is a Dirac δ-function. Its 2-D spectral density P(k 1,
k 2), which is the 2-D Fourier transform of the autocorrelation func-
tion, is constant. We therefore, have the simple situation in which
the 1-D spectral density of any cross-section of W(x 1, x 2) is con-
stant, and the 2-D spectral density P(k 1, k 2) is also constant. The
desired spectral density P(k) is also constant if it is not defined
as an azimuthal sum but as an azimuthal average of P(k 1, k 2) as
in

P(k) = 1

2π

∫ 2π

0
P(k cos α, k sin α) dα. (5)

With definition (5) the expected power in eq. (4) can be written as

E{B(x1, x2)2} =
∫ ∞

0
P(k) 2πk dk. (6)

Values of P(k) carry the unit nT2 km2, which is the unit of a 2-D
power spectral density. The spectral density P(k) as defined in (5)
is independent of the coordinate-system.

Spherical harmonic power spectrum

In geocentric spherical polar coordinates, with radius r, colatitude
ϑ and longitude ϕ, we can write B, following the notation of Backus
et al. (1996), as a sum of spherical harmonic contributions Bm

� of
degree � and order m as

B(ϑ, ϕ) =
∞∑

�=1

�∑
m=−�

Bm
� (ϑ, ϕ), (7)

where increasing values of � on a sphere with radius r correspond
to decreasing wavelengths λ = 2πr/(� + 1/2). The contributions
are orthogonal in the sense that

〈Bm
� (ϑ, ϕ)Bm′

�′ (ϑ, ϕ)〉 = 0 for � �= �′ or m �= m ′, (8)

where 〈·〉 denotes the mean over the surface of the sphere. Then the
power can be written as

E{B(ϑ, ϕ)2} = 〈B(ϑ, ϕ)2〉 =
∞∑

�=1

�∑
m=−�

〈
Bm

� (ϑ, ϕ)2
〉

(9)

defining a discrete representation of the power in terms of contri-
butions of degree � and order m. Let us now represent the magnetic
field contribution Bm

� in the usual way as the gradient of a scalar
magnetic potential ψ :

Bm
� = −∇ψm

� = −
(

1

r
∇s + r̂∂r

)
ψm

� , (10)

with surface gradient ∇s = r∇ − r∂r = ϑ̂∂ϑ + (ϕ̂/sin ϑ)∂ϕ . The
magnetic potential is given in terms of the Gauss coefficients gm

� as

ψm
� (r, ϑ, ϕ) = Re

(
Re

r

)�+1

gm
� βm

� (ϑ, ϕ), (11)

where the Schmidt semi-normalized spherical harmonic basis func-
tions βm

� (ϑ , ϕ) (Backus et al. 1996, p. 141–142) are defined as

βm
� = cos mϕ P̆m

� (cos ϑ), 0 ≤ m ≤ � (12)
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β−m
� = sin mϕ P̆m

� (cos ϑ), 1 ≤ m ≤ �, (13)

and the functions P̆m
� (μ) are given by

P̆m
� (μ) =

⎧⎨⎩
√

2 (�−m)!
(�+m)! Pm

� (μ) if 1 ≤ m ≤ �

P�(μ) if m = 0,

(14)

where Pm
� (μ) are the associated Legendre functions (eq. 3.7.2

Backus et al. 1996). Then the power at a particular degree and
order can be written (Backus et al. 1996, p. 145–146) as〈(

Bm
�

)2
〉
=
〈(1

r
∇sψ

m
�

)2〉
+ 〈

(r̂∂r )ψm
�

)2〉
(15)

= (
gm

�

)2
(

Re

r

)2�+4[〈(∇sβ
m
�

)2
〉
+
〈
(� + 1)2

(
βm

�

)2
〉]

(16)

= (
gm

�

)2
(

Re

r

)2�+4
�(� + 1) + (� + 1)2

2� + 1
(17)

= (� + 1)
(
gm

�

)2
(

Re

r

)2�+4

. (18)

The discrete representation of the geomagnetic field power (9) then
becomes

E{B(ϑ, ϕ)2} =
∞∑

�=1

(� + 1)

(
Re

r

)2�+4 �∑
m=−�

(
gm

�

)2
. (19)

In (19) a sum over the index m is followed by an outer sum over the
harmonic degree �. In contrast to �, the azimuthal index m depends
on the orientation of the coordinate system. As in definition (5),
we become independent of the coordinate system by averaging over
the azimuthal index m. Performing the inner azimuthal sum in (19)
then gives

E{B(ϑ, ϕ)2} =
∞∑

�=1

(2� + 1)S�, (20)

where the geomagnetic power spectrum S� is defined as

S� = � + 1

2� + 1

(
Re

r

)2�+4 �∑
m=−�

(
gm

�

)2
. (21)

This is the definition that should be used for the geomagnetic power
spectrum instead of R� of eq. (1). The quantity S� of eq. (21)
provides the average power per independent mode, of which there
are 2� + 1 for each degree �. This is consistent with the usual
definition of a spatial power spectrum. In contrast, R� provides the
total power of all modes combined for a given degree. As pointed
out by Hipkin (2001), the quantity R� is, therefore, more, adequately
referred to as the degree variance, rather than a power spectrum.
The degree variance, computed as an azimuthal sum (rather than an
average) over the orders m, slopes upward with increasing degree
� for a spatially uncorrelated field, as seen for the Earth’s crustal
magnetic field at long wavelengths (Fig. 1).

In order to establish compatibility with plane grids, we have
to extend the discrete geomagnetic power spectrum (21) into a
continuous spectral density. Extending the discrete function S� into
a continuous step function S(�), where S(�) = S round(�), we can write
eq. (20) as

E{B(ϑ, ϕ)2} =
∫ ∞

1/2
(2� + 1) S(�) d�. (22)

Integration starts at 1/2, as the lowest value that will round to � = 1.
Next, let us transform the integrand to a function of the wavenumber
k. The wavenumber of a spherical harmonic of degree � is (p. 103
Backus et al. 1996)

k =
√

�(� + 1)

r
≈ � + 1/2

r
. (23)

We can substitute d� = r dk, giving

E{B(ϑ, ϕ)2} =
∫ ∞

1/r
2rk S(rk − 1/2) r dk (24)

=
∫ ∞

1/r

r 2 S(rk − 1/2)

π︸ ︷︷ ︸
P(k)

2πk dk (25)

Hence, the expected power E {B (ϑ , ϕ)2} can be written as an
integral over the spectral density P(k), as prescribed in the nor-
malization condition (6). The spherical harmonic coefficients gm

�

provide values of P(k) at wavenumbers k � = (� + 1/2)/r with

P(k�) = r 2 S(�)

π
= r 2(� + 1)

π (2� + 1)

(
Re

r

)2�+4 �∑
m=−�

(
gm

�

)2
. (26)

This spectral density P(k �) follows from the discrete geomagnetic
power spectrum (21) by multiplication with r 2/π . The spectral den-
sity P(k) is used later to relate plane spectra to the geomagnetic
power spectrum S�. It is also useful for comparing magnetic field
spectra from different planets because, in contrast to S� of (21), the
spectral density P(k) of (26) is an absolute measure of field vari-
ability, independent of the radius of the sphere on which the data
are collected. For example, if E gm

� and M gm
� are the Gauss coef-

ficients of the terrestrial and martian magnetic fields, respectively,
then P(k) of (26) allows for the direct comparison of magnetic field
power spectra for Earth and Mars. This compatibility follows di-
rectly from definitions (4) to (6), but it is not easy to see in (26)
because the Gauss coefficients gm

� depend on the chosen planetary
reference radius Re.

Total intensity spectrum

Aeromagnetic surveys usually resolve only the total intensity of the
field. This is primarily due to the technical difficulty of accurately
orienting a vector magnetometer on an aircraft. To compare such
data with global field models, one can estimate the total intensity
spectrum from the aeromagnetic data and compare it with the global
total intensity spectrum. A more attractive possibility, discussed be-
low, is to directly estimate the geomagnetic power spectrum corre-
sponding to eq. (21) from the local total intensity data.

There are two ways of obtaining a globally averaged total in-
tensity spectrum from the spherical harmonic coefficients of the
magnetic potential. A numerical approach is to use a reverse spher-
ical harmonic transform to compute a latitude/longitude grid of the
magnetic field B from the Gauss coefficients gm

� . Then compute |B|
and obtain the spherical harmonic coefficients of |B| by a forward
transform. These coefficients can then be used to compute the exact
total intensity spectrum T � by

T� = 1

(2� + 1)2

�∑
m=−�

(
tm
�

)2
, (27)

where tm
� are the Schmidt semi-normalized spherical harmonic co-

efficients of the total intensity. Here, one division by (2� + 1) is
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Figure 2. Verification of the total intensity spectrum estimated from Gauss
coefficients: for the exact globally averaged total intensity spectrum, the
total intensity on a latitude/longitude grid is computed from the spherical
harmonic coefficients of the C89 global magnetic field model (Cain et al.
1989). A forward spherical harmonic transform gives the coefficients of the
total intensity from which the total intensity spectrum is calculated using
eq. (27). The dashed line indicates the spectrum estimated from the Gauss
coefficients via eq. (42) using the globally averaged value of 5/12 for the
term (1 + sin2 I )/4. The approximation holds well for the crustal part of the
spectrum.

for the azimuthal average, while the second division by (2� + 1)
accounts for the Schmidt normalization. The solid line spectra in
Fig. 2 were computed in this way.

Alternatively, the total intensity spectrum can be estimated di-
rectly from the Gauss coefficients as follows: Given the dominance
of the main magnetic field, a high order magnetic field harmonic
Bm

� contributes to the total intensity only with its component B||
�,m

parallel to the main field. Hence, we have to derive an estimate of
the expected power E{(B||

�,m)2}.
Let us assume that the crustal magnetic field has stationary and

isotropic statistical properties over the Earth’s surface. Then the
contribution of Bm

� to the power of the total intensity is

E
{(

B||
�,m

)2
}

= E
{(

b · Bm
�

)2
}

(28)

= E
{(

br Br
�,m + bt · Bt

�,m

)2
}
, (29)

where b is a unit vector in the direction of the main field and the
indices r and t denote the radial (‖r) and tangential (⊥r) parts of
the vectors at the location r. For this simple statistical model, the
crustal field power depends only on the local inclination I of the
main field. In this case, statistical expectation means that we have
to average not only over all locations on the sphere, but also over
all possible values of the main field declination δ as

E
{(

B||
�,m

)2
}

=
〈

1

2π

∫ 2π

0

(
br Br

�,m + bt (δ) · Bt
�,m

)2
dδ

〉
(30)

=
〈(

br Br
�,m

)2 + 1

π

∫ 2π

0
br Br

�,mbt (δ) · Bt
�,mdδ︸ ︷︷ ︸

=0

+ 1

2π

∫ 2π

0
(sin2δ (bt )

2
(
Bt

�,m

)2
dδ

〉
(31)

= b2
r

〈(
Br

�,m

)2
〉
+ 1

2
(bt )

2
〈(

Bt
�,m

)2
〉

(32)

= sin2 I
〈(

Br
�,m

)2
〉
+ 1

2
cos2 I

〈(
Bt

�,m

)2
〉
. (33)

Here, the radial part Br
�,m and tangential part Bt

�,m of Bm
� are

Br
�,m(r, ϑ, ϕ) = (� + 1)

(
Re

r

)�+2

gm
� βm

� (ϑ, ϕ) (34)

Bt
�,m(r, ϑ, ϕ) = −

(
Re

r

)�+2

gm
� ∇sβ

m
� (ϑ, ϕ), (35)

where ∇s and gm
� were defined above. From (34) and (35) the

average strengths of the radial and tangential parts follow as (see
Backus et al. 1996, p. 124, for a similar derivation):〈(

Br
�,m

)2
〉
= (� + 1)2

(
Re

r

)2�+4(
gm

�

)2
〈(

βm
�

)2
〉

(36)

〈(
Bt

�,m

)2〉 = (
Re

r

)2�+4(
gm

�

)2〈∇sβ
m
� · ∇sβ

m
�

〉
(37)

=
(

Re

r

)2�+4(
gm

�

)2〈−βm
� ∇2

s βm
�

〉
(38)

= �(� + 1)

(
Re

r

)2�+4(
gm

�

)2〈(
βm

�

)2〉
. (39)

For the high degree parts of the magnetic field 〈B2
r 〉/〈(Bt )2〉 = (� +

1)/� ≈ 1, so their strength is half radial and half tangential (Holme
& Jackson 1997). Thus, eq. (33) becomes

E
{(

B||
�,m

)2
}

≈
(

1

2
sin2 I + 1

4
cos2 I

)
E
{(

Bm
�

)2
}

(40)

= 1 + sin2 I

4
E
{(

Bm
�

)2
}
. (41)

In particular, the ratio is 1/4 for equatorial and 1/2 for polar locations
on the globe and its spherical average for a dipolar main field is 5/12.
Superimposing a harmonic of degree � onto a harmonic of degree 1
gives harmonics of degree (� − 1) and (� + 1). The precise relation
(A5), derived in the Appendix, shows that the term of degree (� −
1) dominates on average. Hence, B||

� contributes its power mainly to
|B|�−1, rather than to |B|�. This is also mentioned without derivation
by Arkani-Hamed et al. (1994). In summary, we obtain the relation

E
{|B|2�−1,m

} ≈ 1 + sin2 I

4
E
{(

Bm
�

)2
}
, where |m| < �. (42)

However, relation (42) only holds if the decay of the true total
intensity spectrum is less steep than the decay of the total intensity
spectrum of the lower harmonics of the field. Otherwise, these lower
harmonics dominate and (42) underestimates the true total intensity
spectrum. This happens with the Earth’s main field, as is illustrated
in Fig. 2. For the crustal magnetic field, on the other hand, the relation
appears to be quite accurate. Finally, note that relation (42) can be
reversed. While the crustal magnetic vector field cannot be inferred
unambiguously from total intensity data, we can get a reasonable
estimate of its vector spectrum.

Plane power spectrum estimator

Apart from isolated Project Magnet aeromagnetic vector data, re-
gional marine and aeromagnetic surveys usually provide only the
total intensity of the field, denoted here by F. As before, we shall
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write F as a sum of orthogonal contributions from decreasing wave-
lengths. For practical purposes, let an equidistant grid F[x(i 1),
y(i 2)] with side length L be given by the square Matrix G(i 1, i 2), i 1,
i 2 = 0, . . . , n − 1. The matrix can be written as a discrete Fourier
sum

G(i1, i2) = 1

n

n−1∑
j1=0

n−1∑
j2=0

exp
2π i(i1 j1 + i2 j2)

n
G̃( j1, j2), (43)

where G̃( j1, j2) is the discrete complex Fourier transform of G(i 1,
i 2) and j1 and j2 are integer indices. With definition (43) the Fourier
transformed matrix fulfils
n−1∑
i1=0

n−1∑
i2=0

G(i1, i2)2 =
n−1∑
j1=0

n−1∑
j2=0

|G̃( j1, j2)|2. (44)

Indeed, it is recommended in the practical application of the fol-
lowing to check for this property, since fast Fourier transform
(FFT) computer programs sometimes add factors of n and n2 to
either side of this equation. Since G(i 1, i 2) is real valued, its
complex Fourier transform G̃( j1, j2) has the property G̃( j1, j2) =
G̃(n − j1, n − j2), j1, j2 = 1, . . . , n − 1, where the bar denotes
complex conjugation. Unfortunately, in this commonly used order-
ing of the grid G̃( j1, j2), the indices j1 and j2 do not directly reflect
the overtone numbers (harmonics). To make it easier to implement
the proposed equations in practice, let us introduce a re-arranged
Fourier grid G̃ ′( j1, j2), where j 1, j 2 = − n/2 + 1, . . . , n/2 are the
harmonics of the grid:

G̃ ′( j1, j2) = G̃( j1, j2), 0 ≤ j1, j2 ≤ n

2
(45)

G̃ ′(− j1, j2) = G̃( j1, n − j2), 0 ≤ j1 <
n

2
, 0 < j2 ≤ n

2
(46)

G̃ ′( j1, − j2) = G̃(n − j1, j2), 0 < j1 ≤ n

2
, 0 ≤ j2 <

n

2
(47)

G̃ ′(− j1, − j2) = G̃(n − j1, n − j2), 0 < j1, j2 <
n

2
. (48)

With this re-arranged grid, and using the estimate

Ê
{

F[x(i1), y(i2)]2
} = 1

n2

n−1∑
i1=0

n−1∑
i2=0

G(i1, i2)2, (49)

we can write eq. (44) as

Ê
{

F[x(i1), y(i2)]2
} = 1

n2

n/2∑
j1, j2=−n/2+1

∑
|G̃ ′( j1, j2)|2. (50)

This is the plane counterpart to the discrete spherical harmonic rep-
resentation of the estimated power in eq. (19). Similar to McKenzie’s
definition of an azimuthally summed plane spectrum for the gravity

field (McKenzie 1994), we can define an azimuthal average G̃2(s)

as a function of the harmonic s =
√

j2
1 + j2

2 as

G̃2(s) = 1

ns

∑
ns

|G̃ ′( j1, j2)|2, (51)

where the sum extends over all index pairs ( j 1, j 2) with s − 0.5 ≤√
j2
1 + j2

2 < s + 0.5. The number of such index pairs is denoted by

ns . With definition (51) as an azimuthal average, which is continuous
in s, we can rewrite eq. (50) as

Ê
{

F[x(i1), y(i2)]2
} = 1

n2

∫ ∞

0
G̃2(s) 2πs ds. (52)

Finally, expressing the integrand in terms of the wavenumber k =
2πs/L and substituting ds = L/2πdk gives

Ê
{

F[x(i1), y(i2)]2
} =

∫ ∞

0

L2

(2π )2 n2
G̃2

(
Lk

2π

)
︸ ︷︷ ︸

T (k)

2πk dk (53)

with the total intensity spectral density

T (k) = L2

(2π )2 n2
G̃2

(
Lk

2π

)
. (54)

Definition (54) is consistent with the azimuthally averaged power
spectrum (‘radial power spectrum’) commonly used in applied grav-
ity and magnetics, see for example, Spector & Grant (1970) or
Blakely (1995, p. 415). Multiplication by (L/n)2 makes the spec-
tral density independent of the grid size and sampling interval.
The division by (2π )2 is necessary in order to fulfil condition (6),
requesting that the integrated power spectral density be equal to
the expected power. From (54) follows the discrete total intensity
spectrum corresponding to (27) as

T� = L2

4π R2
e n2

G̃2

[
(2� + 1)L

4π Rgrid

]
, (55)

where the radial distance Rgrid of the local grid from the Earth centre
is likely to differ from the magnetic reference radius Re.

Vector power spectrum estimated from
plane total intensity data

Eq. (42) provides an estimate of the total intensity spectrum from
the vector spectrum. We can now revert this relation and estimate
the geomagnetic power spectrum at Re from plane total intensity
data. Using k �+1 = k � + 1/r we have

S� ≈
(

Rgrid

Re

)2�+4 4

1 + sin2 I
T�+1 (56)

=
(

Rgrid

Re

)2�+4
L2

π (1 + sin2 I )R2
e n2

G̃2

[
(2� + 3)L

4π Rgrid

]
, (57)

where I is the inclination of the main magnetic field at the location
of the grid.

A P P L I C AT I O N

The main benefit of this precisely defined power spectrum is that
it allows the comparison of spectra from different data sets, such
as global models and grids of different side lengths and cell sizes.
To illustrate the utility of the above derivations, the NGDC-720
spectrum is compared with local grids cut out of the NGDC World
Magnetic Anomaly Map (WMAM) (Maus et al. 2007b).

Since NGDC-720 is a spherical harmonic model, the geomag-
netic power spectrum can be inferred easily from its Gauss coef-
ficients, using eq. (21). In contrast, estimation of the correspond-
ing spectra from the regional grids requires a more complicated
procedure.

(1) To obtain an approximately equal-area coverage of the
spheroid with sample grids, a 20 × 20 mesh on the surface of a
cube was projected onto the surface of the Earth. The mesh centres
were then chosen as the centres of regional grids.
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(2) For each grid location, a 20◦ × 20◦ plane mesh with 0.05◦

cell spacing was projected onto the spheroid. For each cell, the
total intensity anomaly was extracted from the WMAM grid. This
corresponds to a projection of the WMAM onto local plane grids
to avoid spherical distortion.

(3) For each grid, the spectrum was estimated by subtracting the
mean, detrending, applying a sinusoidal taper, FFT, and azimuthal
average.

(4) Taking into account the local inclination of the main field
and the local difference between Rgrid and Re, the geomagnetic
spectrum of each grid was estimated using eq. (57)

(5) Three averages of the grid spectra were computed: (1) an
average of all grids, (2) an average of oceanic grids, defined as those
having at least 90 per cent ocean coverage and (3) an average of
continental grids, having not more than 40 per cent ocean coverage.
A subsample of the grid outlines is displayed in Fig. 3. The same
approach is also possible using single grids, but the power estimates
at wavelengths close to the grid size then have high uncertainties.
A large number of grids were, therefore averaged here, in order to
obtain a precise estimate of the spectrum.

The resulting combined spectrum is displayed in Fig. 4. It shows
excellent agreement of the average geomagnetic power spectrum es-
timate from plane data with the NGDC-720 spectrum. As expected,
the field over continental crust is found to be stronger than over

Figure 3. From 2400 plane grids, those with more than 90 per cent ocean
coverage were chosen as ocean samples, and those with less than 40 per cent
ocean coverage as land samples. Displayed here is only a small subset of the
grids.

0.0001

0.01

1

100

10000

1e+06

1e+08

1 10 100 1000

20000 5000 2000 500 200 50 20

p
o

w
e

r
(n

T
2
)

spherical harmonic degree

wavelength [km]

NGDC-720 model
WMAM all 20

o
x20

o
grids

WMAM land
WMAM ocean

Figure 4. Geomagnetic power spectrum of NGDC-720 compared with
the corresponding estimates from subgrids of NGDC’s World Magnetic
Anomaly Map. On average, magnetic anomalies over continental crust are
significantly stronger than the global average, while anomalies over oceanic
crust are usually weaker.

oceanic crust. This is likely due to differences in the thickness of
the magnetized layer, but anomaly cancellation of adjacent stripes
may also play a role in reducing the strength of the oceanic anomaly
field.

The combined spectrum of Fig. 4 can also be used for identifying
technical field modelling issues. The WMAM grid was produced
by substituting the spherical harmonic coefficients of degrees 1–
100 in the compilation of marine and aeromagnetic data with the
corresponding coefficients of the satellite-based model MF5. The
individual ocean and land averages show obvious steps at degree
100. A decrease in power in the ocean grids is explained by missing
short wavelength signal (degree > 100) due to the limited marine
data coverage in the southern oceans. The increase in the power over
land at degree 100, on the other hand, could indicate missing signal
in MF5 due to the filtering and line-levelling of the input satellite
data, or it could indicate the presence of spurious anomalies in
the continental compilations introduced by stitching together small,
individual surveys. In the NGDC-720 spectrum, these differences
average out, so that the model does not show any artefacts at degree
100. This illustrates the utility of comparing global and regional
spectra for quality control in field modelling.

D I S C U S S I O N A N D C O N C LU S I O N S

The power spectrum is a valuable tool in many areas of science. In
geomagnetism, the widespread use of degree variances as a geo-
magnetic power spectrum is a continuing source of confusion and
misinterpretation. The fact that the degree variances are flat at the
core–mantle boundary cannot be interpreted as a ‘white depth’ be-
cause degree variances slope upward for a spatially uncorrelated
field. The long-wavelength crustal field, on the other hand, is indeed
spatially uncorrelated at the Earth’s surface, but this is obscured by
upward sloping degree variances.

The geomagnetic power spectrum must be defined in such a way
that it is flat for a spatially uncorrelated magnetic field. The defini-
tion proposed here retains the discrete nature of the degree variances
and is displayed as a function of the spherical harmonic degree. To
relate this global spectrum to spectra estimated from regional ge-
omagnetic grids, one has to first derive the corresponding spectral
density, which is a continuous function of the wavenumber. Via the
spectral density, the high-degree part of the discrete geomagnetic
power spectrum can be estimated from regional grids. A compli-
cation arises from the fact that local grids usually represent the
anomaly of the total intensity. Hwoever as shown here, an accu-
rate estimate of the geomagnetic power spectrum can de derived by
considering that the total intensity anomaly is the projection of the
anomaly vector onto the main field.

A comparison of the NGDC-720 geomagnetic power spectrum
with corresponding estimates from regional subgrids of NGDC’s
World Magnetic Anomaly Map shows excellent agreement. This
technique facilitates the identification of field modelling errors. It
could also be used to compare the spectral content of different
marine and aeromagnetic compilations. The ability to compare the
global geomagnetic power spectrum with regional spectra provides
a powerful aid in studying the influence of geological factors, such
as crustal type and age, on magnetic anomaly strength. Dividing
grids into oceanic and continental, it was shown here, for example,
that magnetic anomalies are, on average, stronger over continental
than over oceanic crust.

In merging the global geomagnetic spectrum with local spectra
of regional grids, a consistent statistical interpretation of the Earth’s
internal magnetic field emerges: At short wavelengths (<50 km),
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the spectrum falls off with a nearly constant slope in log–log scale.
This is due to the self-similar (fractal) distribution of the crustal
magnetization (Pilkington & Todoeschuck 1993; Maus & Dimri
1994). In the intermediate wavelength range (about 50–500 km) the
curvature of the log–log spectrum follows naturally from the limited
depth extent of the crustal magnetization, as can be reproduced from
a slab model with self-similar magnetization (Maus et al. 1997).
At longer wavelengths (500–2500 km) the spectrum is nearly flat,
indicating that the crustal magnetic field is spatially uncorrelated.
Finally, above wavelengths of 2500 km, the crustal field is masked
by the main field from the Earth’s core.
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A P P E N D I X A

In general, superimposing a harmonic of wavenumber ω1 onto a
harmonic of wavenumber ω2 leads to a sum of harmonics with
wavenumbers (ω1 − ω2) and (ω1 + ω2). Applied to the situation of
an Earth with a dipolar main magnetic field of harmonic degree 1,
a high degree harmonic Bm

� makes contributions of degrees (� − 1)
and (� + 1) to the total intensity of the field. As shall be shown in
the following, the contribution in terms of power to degree (� − 1)
is approximately one order of magnitude stronger than to degree
(� + 1), so the latter should be negligible in most cases.

Let us assume that the coordinate axis is aligned with the dipole
axis. Then∣∣B||

�,m

∣∣ = B0
1 · Bm

�∣∣B0
1

∣∣ = Br
1,0 Br

�,m + Bt
1,0 · Bt

�,m∣∣B0
1

∣∣ , (A1)

where B||
�,m is the projection of Bm

� onto the direction of the main
field. From eqs (34) and (35), with β0

1 ∝ cos ϑ follows[
gm

�

(
Re

r

)�+2
]−1 √

1 + 3 cos2ϑ
∣∣B||

�,m

∣∣
︸ ︷︷ ︸

Am
�

= 2(� + 1) cosϑ βm
� − sinϑ ∂ϑβm

� . (A2)

To eliminate all occurrences of ϑ and ∂ϑ , we require the following
relations for fully normalized spherical harmonics

s2∂μβm
� = (� + 1)μβm

� −
√

(2� + 1)(� − m + 1)(� + m + 1)

2� + 3
βm

�+1

(A3)

μβm
� =

√
(� − m)(� + m)

(2� − 1)(2� + 1)
βm

�−1 +
√

(� − m + 1)(� + m + 1)

(2� + 1)(2� + 3)
βm

�+1,

(A4)

where s = sin ϑ and μ = cos ϑ . Relations (A3) and (A4) are valid
for all m and can be deduced from properties of the associated
Legendre functions (Backus et al. 1996, eqs 3.7.38 and 3.7.14).

C© 2008 The Author, GJI, 174, 135–142

Journal compilation C© 2008 RAS



142 S. Maus

Using first (A3) and then (A4) in eq. (A2) gives

Am
� = 3(� + 1)

√
(� − m)(� + m)

(2� − 1)(2� + 1)
βm

�−1

+ (� + 2)

√
(� − m + 1)(� + m + 1)

(2� + 1)(2� + 3)
βm

�+1. (A5)

Having used fully normalized spherical harmonics, we can
argue that the first term on the right is three times stronger in ampli-
tude, hence, roughly one order of magnitude stronger in power than
the second term. However, this conclusion is valid only if the ex-
pectation for (B�

�)
2 and (B−�

� )2 is not higher than for the lower orders
|m| < �.
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