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a b s t r a c t

In the absence of excitation, the Chandler wobble is closely a prograde motion along a circular arc. For
a step excitation, the centre of the arc shifts, giving a secular motion but an equal and nearly opposite
contribution to the Chandler wobble occurs, giving only a second order discontinuity in the pole path.
To detect excitation events, we fit circular arcs by least squares to the unequally spaced data, weighting
by the inverse of the square of the accompanying standard errors. A break is determined if extrapolation

along the circular arc leads to a forecast pole position for which the next measured position lies outside
a circle of acceptance.

We find that often for quite long periods of time, there seems to be relatively little continuous excitation,
leading to the conclusion that much of the excitation comes from sudden events. In particular, we are
encouraged that a break in the pole path was found 11 days before the December 26, 2004 Sumatra-

ake (
Andaman Islands earthqu

. Introduction

Classically, the Earth’s wobble, or the motion of the rotation
xis within the Earth, has been measured by observations of the
ssociated latitude variation. Euler had suggested, in 1765, a rigid
arth would have a free wobble with a period, in sidereal days, near
he reciprocal of the dynamical ellipticity, or close to 10 months.
he existence of the associated latitude variation was confirmed
y simultaneous observations at Berlin and Waikiki in 1891. Since
he two stations are close to 180◦ apart in longitude, the variations,
s expected, were found to be opposite in phase. In the same year,
.C. Chandler, an amateur astronomer, announced that his analy-
is of long series of latitude variations showed that there were two
rincipal components, an annual term and 14-month variation, 40%

onger than Euler’s period for a rigid Earth. It was rapidly shown
hat the lengthened period was due to the fluidity of the oceans
nd elastic yielding of the solid Earth, and the motion is now called
he Chandler wobble. These discoveries led to the establishment of
he International Latitude Service (ILS) in 1895 with five stations all
perating on latitude 39◦08′ North, beginning regular observations

n 1899. Details of the early work are given in the marvelous, pio-
eering book ‘The Rotation of the Earth’ by Munk and MacDonald
1960) which opened up the subject to the general geophysical
udience.
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The original ILS stations used Visual Zenith Telescopes (VZTs).
The inclusion of additional stations and instruments followed the
formation of the International Polar Motion Service (IPMS) as the
successor to the ILS in 1962. Meanwhile, the Bureau International
de l’Heure had established an independent set of observatories
to monitor polar motion to correct the effect of polar motion on
Universal Time (UT). These incorporated instruments such as the
Photographic Zenith Tube (PZT) with improved stability and mea-
surement accuracy. These developments are described in detail in
the masterful successor to Munk and MacDonald’s book, The Earth’s
Variable Rotation by Lambeck (1980).

The co-ordination of polar motion observations using modern
space measurement techniques, such as Very Long Baseline Inter-
ferometry (VLBI), Lunar Laser Ranging (LLR) and Satellite Laser
Ranging (SLR), began with the formation of the International Earth
Rotation Service (IERS) in 1987 as the successor to both the BIH
and the IPMS. In contrast to the classical astronometric techniques
used by the IPMS and BIH, which often yielded pole positions dif-
fering by as much as ten centiseconds of arc (one centisecond of arc
is close to one foot of pole displacement), modern space measure-
ment techniques yield pole positions with error levels reduced by
three orders of magnitude.

The source of excitation of the free Chandler component of the
polar motion has long been a subject of interest. The idea that

earthquakes might have an effect on polar motion goes back at
least to Milne (1906). They were dismissed as having a negligi-
ble effect on the assumption that the displacement fields extended
only to a distance of a few fault lengths. However, Press (1965),
using the elasticity theory of dislocations developed by Steketee

http://www.sciencedirect.com/science/journal/02643707
http://www.elsevier.com/locate/jog
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1958), showed that the displacement fields of earthquakes are
ery extensive, and found permanent offsets on strain meters in
awaii following the 1964 Alaska event. This led Mansinha and
mylie (1967) to estimate that the very extensive displacement
elds predicted by the elasticity theory of dislocations could have
n important contribution to the excitation of the Chandler wob-
le and they later found a correlation between breaks in the pole
ath and large earthquakes (Smylie and Mansinha, 1968). Since
he displacement fields were so extensive, studies in realistic Earth

odels (Smylie and Mansinha, 1971; Dahlen, 1971; Israel et al.,
973) quickly followed. Dahlen (1971) used a normal mode expan-
ion to represent the effect on polar motion but it was shown that
his was incomplete because in the static deformation, the variable
1 in the Alterman, Jarosch and Pekeris notation, is discontinu-
us. Dahlen (1973) later corrected his calculation but the same
rroneous assumption has been recently made by Gross and Chao
2006). The many theoretical questions involved in realistic Earth
stimates of seismic excitation of the Chandler wobble, including
he tensor nature of the focal force systems were finally resolved
n a paper by Smylie et al. (1979).

The dramatic reduction in the error levels of polar motion
easurements, particularly those made with the VLBI technique,

rompts us to develop methods of analysis suited to these
nequally spaced observations, allowing a new examination of
reaks in the pole path that may be associated with seismic activity.
nce again, we will find the breaks in the pole path are second order
iscontinuities, there being little instantaneous effect as the secular
olar shift is balanced by a nearly equal and opposite contribution
o the Chandler wobble.

. Free and forced polar motion

Earth’s rotation vector is conveniently expressed as

m1, m2, 1 + m3)˝, (1)

ith ˝ = 7.2921151467 × 10−5 rad/s being the adopted mean rate
f rotation. m1, m2, m3 are then dimensionless quantities express-
ng Earth’s instantaneous rotation. m1, m2 are the direction cosines
f the axis of rotation with respect to the reference x3 axis, and m3
s the relative change in the axial spin rate. As mentioned before,
ne centisecond of arc subtended at the geocentre closely corre-
ponds to a displacement of the pole of one foot. Since the pole
ever departs from the reference pole by more than 10 or 15 feet,
he dimensionless quantities m1, m2, at most, are of order 10−6.

Excluding large scale polar wander, the Liouville equations
or polar motion are then accurately linearizable to (Munk and

acDonald, 1960, Ch. 6; Lambeck, 1980, Ch. 3)

dm

dt
− i�0m = f (t), (2)

ith the complex phasor m = m1 + im2 representing the pole posi-
ion and f (t) a complex valued excitation function. The complex
handler angular frequency is

0 =
(

�c + i

�

)
, (3)

here � is the damping time. The damping time is given by � =
Q/�c with �c the real Chandler angular frequency. In the absence
f excitation, the free wobble is
(t) = Cei�0t , (4)

ith C a complex constant. The free polar motion is then pro-
rade along a circular spiral at the Chandler angular frequency �c ,
lowly decaying with damping time � ≈ 10 years. With excitation,
Fig. 1. Pole path for step excitation.

the polar motion is found by integration to be

m(t) = ei�0t

∫ t

−∞
e−i�0�f (�)d�. (5)

A sudden redistribution of mass within the Earth, such as associ-
ated with a major earthquake, produces off-diagonal components
of the inertia tensor represented by the complex number �c =
�c13 + i�c23. To terms of order �c/˝ ≈ 1/436, it produces a Chan-
dler wobble −(˝ �c/�0A)ei�0t and a secular polar shift (˝ �c/�0A)
(Smylie and Mansinha, 1968). To this order of approximation, there
is no instantaneous change in pole position as the secular polar shift
and Chandler wobble at t = 0 cancel. The pole path for this kind of
step excitation is illustrated in Fig. 1.

The annual motion can be removed by a least squares fit to the
overall polar motion. Once the annual motion has been removed,
in the absence of excitation and damping, the pole path should
be a prograde circular motion around the secular pole, with co-
ordinates (m10 , m20 ), at a uniform angular rate �c = 2�/Tc , where
Tc is the period of the Chandler wobble. The jth pole position will
have associated with it a unique time tj . The angle turned through
to the jth pole position is then

˛j = �c

j−1∑
k=1

(tk+1 − tk) for j ≥ 2, ˛1 = 0. (6)

If standard errors (�1j
, �2j

) are available for the pole co-ordinates
(m1j

, m2j
) to fit a circular arc by least squares to n successive pole

positions, we minimize the sum

S =
n∑

j=1

(
[m1j

− m10 − a cos(� + ˛j)]
2

�2
j

+
[m2j

− m20 − a sin(� + ˛j)]
2

�2
j

)
, (7)

with �2
j

= �2
1j

+ �2
2j

, and where a is the radius of the fitted arc and

� is the angle that the radius to the first pole position makes with
the x-axis. The geometry of the arc fitted to five successive pole

positions is illustrated in Fig. 2. The sum (7) has four adjustable
free parameters, the co-ordinates of the secular pole (m10 , m20 ),
the radius a of the circular arc and the angle � the radius arm to
the first pole position makes with the x-axis. The normal equations
for the least squares fit of the circular arc are found by setting its
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Fig. 2. Least squares arc fitting.

artial derivatives with respect to these parameters to zero. Setting
he partial derivative of S with respect to m10 to zero gives the first
ormal equation as

1 − m10 	 − ua cos � + va sin � = 0, (8)

here

1 =
n∑

j=1

m1j

�2
j

, u =
n∑

j=1

cos ˛j

�2
j

, v =
n∑

j=1

sin ˛j

�2
j

,

=
n∑

j=1

1

�2
j

. (9)

second normal equation is obtained by setting the partial deriva-
ive of S with respect to m20 to zero, giving

2 − m20 	 − ua sin � − va cos � = 0, (10)

here

2 =
n∑

j=1

m2j

�2
j

. (11)

efining

=
n∑

j=1

[
m1j

cos ˛j + m2j
sin ˛j

�2
j

]
, (12)

=
n∑

j=1

[
m1j

sin ˛j − m2j
cos ˛j

�2
j

]
, (13)

n setting the partial derivative of S with respect to � to zero, we
nd the third normal equation

cos � + w sin � − m10 (u sin � + v cos �)

+ m20 (u cos � − v sin �) = 0. (14)
inally, the fourth normal equation is found by setting the partial
erivative of S with respect to a to zero, giving

cos � − z sin � − m10 (u cos � − v sin �)

− m20 (u sin � + v cos �) − a	 = 0. (15)
dynamics 48 (2009) 226–229

Eqs. (8), (10), (14), and (15) are the normal equations for the least
squares fit of the circular arc to the unequally spaced pole position
observations, taking account of the standard errors of the mea-
surements. They may be regarded as four equations in the four
unknowns m10 , m20 , a cos �, and a sin �. If we multiply (14) through
by sin � and add it to (15) multiplied through by cos �, we find

um10 + vm20 + a	 cos � = w. (16)

Similarly, multiplying (15) through by sin � and subtracting it from
(14) multiplied through by cos �, yields

vm10 − um20 − a	 sin � = z. (17)

Solving Eq. (8) for m10 gives

m10 = s1 − ua cos � + va sin �

	
, (18)

while solving Eq. (10) for m20 gives

m20 = s2 − ua sin � − va cos �

	
. (19)

Substitution of these expressions in Eq. (16) yields

a cos � = us1 + vs2 − w	

u2 + v2 − 	2
, (20)

while substitution in Eq. (17) yields

a sin � = us2 − vs1 + z	

u2 + v2 − 	2
. (21)

In turn, substitution of these expressions in (18) produces

m10 = uw + vz − s1	

u2 + v2 − 	2
, (22)

while substitution in (19) produces

m20 = vw − uz − s2	

u2 + v2 − 	2
. (23)

The circular arc fitted to n successive pole positions can then
be used to predict the (n + 1) th pole position. The predicted pole
co-ordinates of the (n + 1) position are

m10 + a cos(� + ˛n+1) = m10 + (a cos �) cos ˛n+1

− (a sin �) sin ˛n+1, (24)

and

m20 + a sin(� + ˛n+1) = m20 + (a sin �) cos ˛n+1

+ (a cos �) sin ˛n+1. (25)

An objective criterion can be constructed to determine breaks in
the pole path. The squared radius from the predicted pole position
to the actual position is multiplied by the ratio of the squared error
to the average squared error for the whole record. If the root of this
quantity is less than the radius of the specified circle of acceptance,
no break is detected and the least squares fit to the circular arc is
continued, if it is equal or greater than the radius of the specified
circle of acceptan ce, a break is found and a new circular arc is begun.

Of interest, is whether the largest earthquake of the period
1984.0–2007.0, the magnitude 9.1 Sumatra-Andaman Islands event
on December 26, 2004, shows up in the pole path. In Fig. 3, we show
the arcs fitted for a circle of acceptance of radius 0.01 arcsec. The
first arc runs from June 8, 2004 to December 14, 2004. The sec-
ond arc runs from December 15, 2004 to June 30, 2005. No break is

detected for more than a half year before the quake and for more
than a half year after the quake. The detected break occurs 12 days
before the earthquake.

In order to show the fit of the arcs to the actual pole path, we
over plot the VLBI pole positions, showing their standard errors
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Fig. 3. 2004–2005 fitted arcs.
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models and changes in the rotation of the Earth. Geophysical Journal of the Royal
Astronomical Society 23, 329–354.
ig. 4. Over plot of the VLBI pole positions, with their standard errors inflated by a
actor of one hundred for clarity, on the fitted circular arcs.

nflated by a factor of one hundred for clarity, on the fitted arcs in
ig. 4.
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3. Conclusions

Of great interest is the evidence found that the largest earth-
quake of the period, the magnitude 9.1 Sumatra-Andaman Islands
event of December 26, 2004, is found to be reflected in a break in
the pole path. The break occurs 12 days before the quake. Many of
the breaks found by Smylie and Mansinha (1968) in their analysis of
the classical BIH pole path also occurred before large quakes. This
suggests the the far field displacement develops before the final
release of stress by slip on the fault plane.

While this study is preliminary in nature, it opens up the analy-
sis of modern observations made with new space techniques such
as VLBI. Much geophysical information is likely contained in these
observations.
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