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Ice Age Sea Level Change: The Sea-Level Equation 

Generalized Sea-Level Equation Projection of sea-level 
change at tj onto the 
ocean function at time tj 

The'Sea'Level'Equa3on'

A topographic correction term to 
account for shoreline migration 

G(t )j

New Shoreline

C(t ) = 10 C(t ) = 00

C(t ) = 1j C(t ) = 0j

Original Shoreline

G(t )0

R(t )0

R(t )j

A

B

C

D

E

F
G

I
H



Ice location and thickness 
(inferred from modeling 
GIA data, e.g. sea level) 

Earth geometry and elastic, 
density and viscosity** 
structure (PREM, GIA data) 
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This Class: Sea Level Change Continued… 

 

1.  Sea level change and GIA on ice age timescales. 

 

2.  An Example Calculations 

3.  Applications 
1.  Short timescale modern: 20th Century Tide Gauge Analysis 

2.  Short timescale paleo: Meltwater Pulse 1A (~14ky ago) 

3.  GIA: Archaeological evidence for recent acceleration in sea level rise 
(Holocene – last 2 ky) 

4.  Ice age timescale:  Sea Level during the Last Interglacial (~125 ky ago) 
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LGM(

…(difference(in(ice(volume(relaLve(to(the(
present`day(is(sufficient(to(raise(globally(
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Mitrovica and Milne (2002) 

Numerical(predicLon(of(the(present`day(rate(of(change(of(global(sea(level((
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Continental Levering! 
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This Class: Sea Level Change Continued… 

 

1.  Sea level change and GIA on ice age timescales. 

 

2.  An Example Calculations 

3.  Applications 
1.  Short timescale modern: 20th Century Tide Gauge Analysis 

2.  Short timescale paleo: Meltwater Pulse 1A (~14ky ago) 

3.  GIA: Archaeological evidence for recent acceleration in sea level rise 
(Holocene – last 2 ky) 

4.  Ice age timescale:  Sea Level during the Last Interglacial (~125 ky ago) 
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The Bathtub Model? 
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Antarctic melting  

Greenland melting 

Glacier melting 
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Mitrovica(et.(al.(
(2001)(
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The Correct Physics … 

''Applica3on'to'20th'century'3de'gauge'analysis'

This(analysis:(
Sea(Level(Change(=((
Greenland(+(AntarcLca(+(mountain(glaciers(+(the(rest(



Steric(effects((ocean(temperature(and(salinity(changes)(–(1950`2003:(Berge`
Nguyen(et(al.([Glob.(Planet.(Change,(2008](

Issue: We need another fingerprint! 

''Applica3on'to'20th'century'3de'gauge'analysis'



Cazenave & Llovel (Ann. Rev. Marine Sci., 2009) 
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''Applica3on'to'20th'century'3de'gauge'analysis'

•  Next(slides(on(the(current(state(of(the(art(in(Lde(
guage(analysis([Hay(et(al.,(Nature,(2015](are(from(
Dr.(Carling(Hay((Harvard(University).(



•  Combine observations with models of the underlying 
physics of sea-level change. 

•  “Fingerprint” tide gauge records to estimate the individual 
contributions to 20th century sea-level change. 

Extract global information from sparse records.  
 

Estimating Sea Level 

Multi-Model Kalman Smoother 



Estimating Sea Level 

•  Both algorithms are Bayesian in nature. 

•  Naturally accommodate measurements with data gaps. 

•  Allow the estimation of sea level at sites with and without 
observations. 

•  Compute GMSL by first estimating the equivalent global mean 
value of the individual contributions from their unique temporal-
spatial fingerprints.  

•  The resulting uncertainties in our estimates of global mean sea 
level reflect the data sparsity over time. 

Multi-Model Kalman Smoother (KS) 



Kalman Filter 

 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
Introduction 

 
AN IMPORTANT class of theoretical and practical 

problems in communication and control is of a statistical nature. 
Such problems are: (i) Prediction of random signals; (ii) separa- 
tion of random signals from random noise; (iii) detection of 
signals of known form (pulses, sinusoids) in the presence of 
random noise. 

In his pioneering work, Wiener [1]3 showed that problems (i) 
and (ii) lead to the so-called Wiener-Hopf integral equation; he 
also gave a method (spectral factorization) for the solution of this 
integral equation in the practically important special case of 
stationary statistics and rational spectra. 

Many extensions and generalizations followed Wiener’s basic 
work. Zadeh and Ragazzini solved the finite-memory case [2]. 
Concurrently and independently of Bode and Shannon [3], they 
also gave a simplified method [2] of solution.  Booton discussed 
the nonstationary Wiener-Hopf equation [4]. These results are 
now in standard texts [5-6]. A somewhat different approach along 
these main lines has been given recently by Darlington [7]. For 
extensions to sampled signals, see, e.g., Franklin [8], Lees [9]. 
Another approach based on the eigenfunctions of the Wiener-
Hopf equation (which applies also to nonstationary problems 
whereas the preceding methods in general don’t), has been 
pioneered by Davis [10] and applied by many others, e.g., 
Shinbrot [11], Blum [12], Pugachev [13], Solodovnikov [14].  

In all these works, the objective is to obtain the specification of 
a linear dynamic system (Wiener filter) which accomplishes the 
prediction, separation, or detection of a random signal.4 

——— 
1 This research was supported in part by the U. S. Air Force Office of 

Scientific Research under Contract AF 49 (638)-382.  
2 7212 Bellona Ave.  
3 Numbers in brackets designate References at end of paper.  
4 Of course, in general these tasks may be done better by nonlinear 

filters. At present, however, little or nothing is known about how to obtain 
(both theoretically and practically) these nonlinear filters.  

Contributed by the Instruments and Regulators Division and presented 
at the Instruments and Regulators Conference, March 29– Apri1 2, 1959, 
of THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS.  

NOTE: Statements and opinions advanced in papers are to be understood 
as individual expressions of their authors and not those of the Society. 
Manuscript received at ASME Headquarters, February 24, 1959. Paper 
No. 59—IRD-11. 

 

  

 
 
Present methods for solving the Wiener problem are subject to 

a number of limitations which seriously curtail their practical 
usefulness: 

(1) The optimal filter is specified by its impulse response. It is 
not a simple task to synthesize the filter from such data. 

(2) Numerical determination of the optimal impulse response is 
often quite involved and poorly suited to machine computation. 
The situation gets rapidly worse with increasing complexity of 
the problem. 

(3) Important generalizations (e.g., growing-memory filters, 
nonstationary prediction) require new derivations, frequently of 
considerable difficulty to the nonspecialist. 

(4) The mathematics of the derivations are not transparent. 
Fundamental assumptions and their consequences tend to be 
obscured. 

This paper introduces a new look at this whole assemblage of 
problems, sidestepping the difficulties just mentioned. The 
following are the highlights of the paper: 

(5) Optimal Estimates and Orthogonal Projections. The 
Wiener problem is approached from the point of view of condi- 
tional distributions and expectations. In this way, basic facts of 
the Wiener theory are quickly obtained; the scope of the results 
and the fundamental assumptions appear clearly. It is seen that all 
statistical calculations and results are based on first and second 
order averages; no other statistical data are needed. Thus 
difficulty (4) is eliminated. This method is well known in 
probability theory (see pp. 75–78 and 148–155 of Doob [15] and 
pp. 455–464 of Loève [16]) but has not yet been used extensively 
in engineering. 

(6) Models for Random Processes. Following, in particular, 
Bode and Shannon [3], arbitrary random signals are represented 
(up to second order average statistical properties) as the output of 
a linear dynamic system excited by independent or uncorrelated 
random signals (“white noise”). This is a standard trick in the 
engineering applications of the Wiener theory [2–7]. The 
approach taken here differs from the conventional one only in the 
way in which linear dynamic systems are described. We shall 
emphasize the concepts of state and state transition; in other 
words, linear systems will be specified by systems of first-order 
difference (or differential) equations.  This point of view is 

A New Approach to Linear Filtering  
and Prediction Problems1

 
 

The classical filtering and prediction problem is re-examined using the Bode-
Shannon representation of random processes and the “state transition” method of 
analysis of dynamic systems.  New results are: 

(1) The formulation and methods of solution of the problem apply without modifica- 
tion to stationary and nonstationary statistics and to growing-memory and infinite- 
memory filters.  

(2) A nonlinear difference (or differential) equation is derived for the covariance 
matrix of the optimal estimation error.  From the solution of this equation the co- 
efficients of the difference (or differential) equation of the optimal linear filter are ob- 
tained without further calculations. 

(3) The filtering problem is shown to be the dual of the noise-free regulator problem. 
The new method developed here is applied to two well-known problems, confirming 

and extending earlier results.  
The discussion is largely self-contained and proceeds from first principles; basic 

concepts of the theory of random processes are reviewed in the Appendix. 
   

R. E. KALMAN 
Research Institute for Advanced Study,2 

Baltimore, Md. 

Transactions of the ASME–Journal of Basic Engineering, 82 (Series D): 35-45. Copyright © 1960 by ASME 
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It's a method of predicting the future state of a  
system based on the previous states. 
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Kalman Filter 
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Kalman Filter 

The state is a description of all the parameters we will need to describe 
the current system. 

It's a method of predicting the future state of a system based on the 
previous states. 
 
Iteratively performs a least squares analysis whenever observations are 
available, and in the absence of observations relies on the model 
dynamics to compute the best estimate of state variables. 

State vector at time k: 
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sea level at each tide gauge site 

622 tide gauges 
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Kalman Filter 

20 ice sheets and mountain glaciers 
and a globally uniform term 

ice sheet and mountain glacier melt rates 



Kalman Filter 

http://en.wikipedia.org/wiki/
Kalman_filter 

Initialize        
xk-1| k-1, Pk-1| k-1 

Prior predicted state 
xk | k-1, Pk | k-1 

Observation? 

Yes 

Predict next state 
based on modeled 
dynamics 

Posterior state 
xk | k, Pk | k 

Increment time 
k = k + 1 

Update state with 
comparison 
against 
observations 

Posterior = Prior (no 
updates) 

No 

Prediction 

Correction 

Initialize our sea level and melt rates at the  
first time step (1900). 



Kalman Filter 

http://en.wikipedia.org/wiki/
Kalman_filter 

Initialize        
xk-1| k-1, Pk-1| k-1 

Prior predicted state 
xk | k-1, Pk | k-1 

Observation? 

Yes 

Predict next state 
based on modeled 
dynamics 

Posterior state 
xk | k, Pk | k 

Increment time 
k = k + 1 

Update state with 
comparison 
against 
observations 

Posterior = Prior (no 
updates) 

No 

Prediction 

Correction 

At each time step, we use a model to describe  
how we think the system behaves. 



Kalman Filter 

sea/levelk///=" sea/levelk31///+"
additional/
melt/water"

ocean/"
dynamics/"

+////GIA////+" +////noise"
k31"

At each tide gauge: 

melt/ratek///=" melt/ratek31"ρ/×" +////noise"
Each ice sheet and mountain glacier is modeled as an AR(1) process: 

PREDICTION STEP 

Prescribed GIA &  
ocean models 

Normalized sea-level fingerprints  

additional/
melt/water"

=" /×"normalized/
fingerprints"

melt/ratek31"Σ"
land/ice"

k31"
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http://en.wikipedia.org/wiki/
Kalman_filter 

Initialize        
xk-1| k-1, Pk-1| k-1 

Prior predicted state 
xk | k-1, Pk | k-1 

Observation? 

Yes 

Predict next state 
based on modeled 
dynamics 

Posterior state 
xk | k, Pk | k 

Increment time 
k = k + 1 

Update state with 
comparison 
against 
observations 

Posterior = Prior (no 
updates) 

No 

Prediction 

Correction 
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http://en.wikipedia.org/wiki/
Kalman_filter 

Initialize        
xk-1| k-1, Pk-1| k-1 

Prior predicted state 
xk | k-1, Pk | k-1 

Observation? 

Yes 

Predict next state 
based on modeled 
dynamics 

Posterior state 
xk | k, Pk | k 

Increment time 
k = k + 1 

Update state with 
comparison 
against 
observations 

Posterior = Prior (no 
updates) 

No 

Prediction 

Correction 

Option 1:  No observations 
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Prior predicted state 
xk | k-1, Pk | k-1 
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dynamics 

Posterior state 
xk | k, Pk | k 

Increment time 
k = k + 1 

Update state with 
comparison 
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observations 

Posterior = Prior (no 
updates) 

No 
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Kalman Filter 

http://en.wikipedia.org/wiki/
Kalman_filter 

Initialize        
xk-1| k-1, Pk-1| k-1 

Prior predicted state 
xk | k-1, Pk | k-1 

Observation? 

Yes 

Predict next state 
based on modeled 
dynamics 

Posterior state 
xk | k, Pk | k 

Increment time 
k = k + 1 

Update state with 
comparison 
against 
observations 

Posterior = Prior (no 
updates) 

No 

Prediction 

Correction 

Correction Step 

When we get new data, our state vector (sea level and melt rates) 
should change slightly to refine our current model."



Kalman Filter 

http://en.wikipedia.org/wiki/
Kalman_filter 

Initialize        
xk-1| k-1, Pk-1| k-1 

Prior predicted state 
xk | k-1, Pk | k-1 

Observation? 

Yes 

Predict next state 
based on modeled 
dynamics 

Posterior state 
xk | k, Pk | k 

Increment time 
k = k + 1 

Update state with 
comparison 
against 
observations 

Posterior = Prior (no 
updates) 

No 

Prediction 

Correction 

Correction Step 

The result is a new state estimate that lies between the predicted and 
measured state, and has a better estimated uncertainty than either alone. 



Kalman Filter 

http://en.wikipedia.org/wiki/
Kalman_filter 

Initialize        
xk-1| k-1, Pk-1| k-1 

Prior predicted state 
xk | k-1, Pk | k-1 

Observation? 

Yes 

Predict next state 
based on modeled 
dynamics 

Posterior state 
xk | k, Pk | k 

Increment time 
k = k + 1 

Update state with 
comparison 
against 
observations 

Posterior = Prior (no 
updates) 

No 

Prediction 

Correction 

Step forward in time to make of a new  
prediction on the evolution of the state 



Global Mean Sea Level 

Kalman Smoother (KS) 
1901-1990: 1.2 ± 0.2 mm/yr 
1993-2010: 3.0 ± 0.7 mm/yr 

Gaussian Process Regression (GPR) 
1901-1990: 1.1 ± 0.4 mm/yr 

Church and White (2011) 
1901-1990: 1.5 ± 0.2 mm/yr 
1993-2010: 2.9 ± 0.5 mm/yr 

Jevrejeva et al. (2008) 
1901-1990: 1.9 mm/yr 
1993-2005: 3.7 mm/yr 

Hay/et/al.,/Nature/(2015)."
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1.  Sea level change and GIA on ice age timescales. 

 

2.  An Example Calculations 

3.  Applications 
1.  Short timescale modern: 20th Century Tide Gauge Analysis 

2.  Short timescale paleo: Meltwater Pulse 1A (~14ky ago) 

3.  GIA: Archaeological evidence for recent acceleration in sea level rise 
(Holocene – last 2 ky) 

4.  Ice age timescale:  Sea Level during the Last Interglacial (~125 ky ago) 

''Outline'



''Meltwater'Pulse'1A'

Clark et al. (Science, 2002)(

Source(s) of  
mwp-1A???(

~(15(meters(of(sea`
level(rise(is(<(350(years(
(Deschamps(et(al.(2012)(
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''Meltwater'Pulse'1A'

Possible melt scenarios:(



''Meltwater'Pulse'1A'



''Meltwater'Pulse'1A'

…(but(AntarcLc(ice(sheet(modeling(studies(suggest(that(AntarcLca(contributed(~4`8(meters(over(
the(whole(deglaciaLon.((e.g.(Whitehouse(et(al.,(2012,(Pollard(&(DeConto,(2009,(Gomez(et(al.,(2013)((



''Meltwater'Pulse'1A'



Climate implications? 

Weaver at al. (Science, 2003) 

''Meltwater'Pulse'1A'



''Meltwater'Pulse'1A'
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''Meltwater'Pulse'1A'

Liu(et(al.((2015)(
(
Note:((there(exists(a(large(
body(of(literature(on(the(
climate(and(ice(dynamics(
associated(with(MWP`1A(
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1.  Sea level change and GIA on ice age timescales. 

 

2.  An Example Calculations 

3.  Applications 
1.  Short timescale modern: 20th Century Tide Gauge Analysis 

2.  Short timescale paleo: Meltwater Pulse 1A (~14ky ago) 

3.  GIA: Archaeological evidence for recent acceleration in sea level rise 
(Holocene – last 2 ky) 

4.  Ice age timescale:  Sea Level during the Last Interglacial (~125 ky ago) 

''Outline'



''Archaeological'evidence'for'recent'accelera3on'in'sea'level'rise'

Fish(tanks((Piscinae)((generally(carved(
directly(in(rock)(used(at(the(end(of(2nd(
century(and(early(1st(century(BC(
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''Archaeological'evidence'for'recent'accelera3on'in'sea'level'rise'



''Archaeological'evidence'for'recent'accelera3on'in'sea'level'rise'

Corrected for vertical tectonic movement 

Average = 
-1.35m +/- 0.07m 



''Archaeological'evidence'for'recent'accelera3on'in'sea'level'rise'



''Archaeological'evidence'for'recent'accelera3on'in'sea'level'rise'

Dominated by continental levering! 



''Archaeological'evidence'for'recent'accelera3on'in'sea'level'rise'

-1.37 +/- 0.07m -0.13 +/- 0.09m 

Relative sea-level of 2000 
year old fish tanks  

Correction for ice age effects 



''Archaeological'evidence'for'recent'accelera3on'in'sea'level'rise'

-1.37 +/- 0.07m -0.13 +/- 0.09m 

Conclude: little mass 
change of polar ice 
sheets in last 2000yrs!  
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1.  Sea level change and GIA on ice age timescales. 

 

2.  An Example Calculations 

3.  Applications 
1.  Short timescale modern: 20th Century Tide Gauge Analysis 

2.  Short timescale paleo: Meltwater Pulse 1A (~14ky ago) 

3.  GIA: Archaeological evidence for recent acceleration in sea level rise 
(Holocene – last 2 ky) 

4.  Ice age timescale:  Sea Level during the Last Interglacial (~125 ky ago) 
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•  Marine Isotope Stage 5e (or 
the Eemian stage) 

•  ~125 kyr B.P. 
•  Polar temperatures were 3-5o 

higher than present 
(consistent with 1-2o of global 
warming)  

•  Current greenhouse gas 
concentrations are sufficient 
to raise global temperatures 
1.4-3.2o 

•  Thus, LIG may be a good 
analogue for reasonable 
global warming scenarios 

Clark & Huybers [2009](

5e(

5c(5a(

4(

2(

''Ice'Age'Sea'Level:'The'Last'Interglacial'



Interglacial outcrop Exmouth, W. 
Australia, courtesy Bill Thompson 
(WHOI) (
(
Local LIG sea level markers ~4-6 m 
above present sea-level. What was 
globally averaged sea level at LIG? 

5e(

5c(5a(

4(

2(

''Ice'Age'Sea'Level:'The'Last'Interglacial'
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Statistical Method (Complicated) 

SEA(LEVEL(DATABASE(
(isotopic,(coral,(etc.)(
Noisy((uncertainLes(in((
dates,(tectonics),(sparse(

Empirical(�data(
covariance�(

MANY(ICE(AGE((
SEA(LEVEL(MODELS(

Covariance(between((
LSL(and(GSL((

BAYESIAN((
FRAMEWORK(

Posterior(
Probability(Density(
FuncLon(of(GSL(t)(

''Ice'Age'Sea'Level:'The'Last'Interglacial'



Posterior Probability Densities(

Use these to set up hypothesis  
tests and confidence intervals 

''Ice'Age'Sea'Level:'The'Last'Interglacial'



•  95% likely that globally 
averaged sea level at LIG 
peaked > 6.6 m above 
present level (67% likely that 
it exceeded 8.0 m; only 33% 
likely that it exceeded 9.4 m) 

•  95% likely that both 
Antarctica and Greenland ice 
loss at LIG exceeded 2.5 m 
(equivalent sea level units) 
relative to present day (not 
necessarily at the same time) 

GSL'
Ice'Loss'

''Ice'Age'Sea'Level:'The'Last'Interglacial'



The West Antarctic Ice Sheet 

•  Collapse of marine-sectors = 
3.2m GSLR (Bamber et al., 
Science, 2009) 

The Greenland Ice Sheet(
•  Climate models (Otto-Bliesner 

et al., Science, 2006) suggest a 
maximum ice loss in the GIS 
and circum-Arctic ice fields at 
LIG = 3.4 m GSLR. 

Thermal expansion ~ 1 m GSLR 

''Ice'Age'Sea'Level:'The'Last'Interglacial'



Mean prediction of sea-
level change at these sites 
(weighted by number of 
data points)? 

Physics(of(this(result?(

''Ice'Age'Sea'Level:'The'Last'Interglacial'
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