
Geophysical electromagnetics and magneto-
tellurics

1 Theory: Maxwell’s equations

In 1861-62, James Clerk Maxwell formalized the results of a series of experiments
in electricity and magnetism into one coherent and elegant mathematical theory of
electromagnetism.

In our current notational style, Maxwell’s theory is described in terms of four par-
tial differential equations relating electric and magnetic fields and free charges and
possible magnetic monopoles within space and materials.

• Gauss’ Law:
∇ · ~D = ρe

• Gauss’ Law for magnetism:

∇ · ~B = 0,

assuming that free magnetic monopoles do not exist. If free monopoles do exist,
their presence modifies this law:

∇ · ~B = ρm.

Free magnetic monopoles have never been detected, even at the highest energies
of experiments in particle accelerators. Perhaps the Large Hadron Collider will
detect them.

• Faraday’s Law (induction):

∇ × ~E = −
∂ ~B

∂t
.

Again if free monopoles do exist, one might expect a monopole current density,
say ~K that would add to the equation describing the law as

∇ × ~E = ~K −
∂ ~B

∂t
.

• Ampere’s Law:

∇ × ~H = ~J +
∂ ~D

∂t
.
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In these four equations, ~D is the dielectric displacement vector, ~B is the magnetic
induction vector, ~E, the electric field vector, ~H , the magnetic field vector, ~J , the
current density of electric charges and, if monopoles do exist, ~K, the current density
of possible magnetic poles.

• The constitutive relationships: The volume in which these fields exist re-
lates the vector fields to each other through the constitutive equations.

~D = ε ~E,

~B = µ ~H,

and if the space in which these fields exist is the free space perfect vacuum, ε →
ε0 and µ → µ0. If the space is filled with materials that are electromagnetically
isotropic and that respond linearly to variations in the ~E and ~H fields, ε = κεε0

and µ = κmµ0. If the material properties are not isotropic, then ε and µ (or,
κε and κµ) are described as 2-tensors rather than scalars. If the materials do not
respond linearly, then we could require very much more complex relationships
between the four fields.

To the above 6 relationships, we often add, yet another:

• Ohm’s law:
~J = σ ~E

where σ is the material conductivity which might be a scalar or 2-tensor quan-
tity and may not be describable by a simple linear relationship between the
fields.

In the following development, we shall retreat to the simplicity of isotropy and lin-
earity of the constitutive relationships and Ohm’s law.

1.1 Boundary conditions

Generally, the ~E and ~H vectors that describe an electromagnetic field or wave at any
point must be continuous functions of space and time. Across a boundary between
two materials with different physical properties according to ε, µ and σ, the field
vectors, ~E and ~H , remain continuous. Usually, the boundary condition is sufficiently
established if the components of ~E and ~H locally tangential to the boundary are
continuous. While solutions are often mathematically complex, knowing the geometry
and scale of a structure and the variations in ε, µ and σ across boundaries and within
the structure, we can, in principle, describe the relationships between the field vectors.
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We often distinguish near-field and far-field descriptions of electromagnetic wave phe-
nomena. The near-field description deals with the region close to the source field and
is generally more complicated to describe than the far-field region where a simpler
wave description holds. In the far-field we can describe an electromagnetic wave with
a wave theory not unlike that we have described for seismic S-waves. The wave is
modelled as oscillating in time (with angular frequency ω) and in space (with prop-

agation vector ~k). Locally, the wave may be described as:

~E(~r, t) = ~E(~k, ω)ei(~k·~r−ωt)

and
~H(~r, t) = ~H(~k, ω)ei(~k·~r−ωt)

where the propagation vector may, itself, vary in time and space: ~k(~r, t). Generally,

the wave amplitudes, ~E(~k, ω) and ~H(~k, ω), are complex valued and orthogonal to

one another. ~E and ~H locally relate to one another according to Maxwell’s equations.
Being complex valued, we often describe the amplitude vectors in a polar form as:

~E(~k, ω) = |~E|eiφE

and
~H(~k, ω) = | ~H|eiφH

where the φs are the phase angles referenced to some time origin. Of course,

φE = tan−1 (
=(~E)

<(~E)
),

φH = tan−1 (
=( ~H)

<( ~H)
).

The symbols < and = determine the real and imaginary parts of the complex value
of argument.

2 Simple magneto-tellurics

Near field (i.e. close to the source of the EM field) technologies are important in geo-
physical exploration. Most geophysical surveying methods involving electromagnetics
involve near-field effects of conductivity, permittivity and permeability of geological
materials in response to imposed, temporally varying electromagnetic fields. A de-
tailed description of these surveying technologies is left to our course in Geophysical
Applications – EPSC435. Magneto-telluric methods are also useful in geophyscal sur-
veying though our reason for including them here is that there exist a wide spectrum
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of natural magneto-telluric fields and waves that should, properly, be addressed in
a course in Earth Physics. The boundary between Applied Geophysics and Earth
Physics is diffuse here.

Natural, time varying electromagnetic fields and waves are produced by currents in
the Earth’s ionosphere (the plasma region of the upper atmosphere) and by lightning
strikes on Earth that radiate electromagnetic waves into the spherical-shell waveguide
between the base of the ionosphere and the surface of the Earth. These fields and
waves are significantly influenced by the physical properties, (ε, µ and σ), of the solid
Earth. We address the simplest of these magneto-telluric problems.

Consider a flat-Earth halfspace characterized by ε, µ and σ into which an electro-
magnetic wave enters from the halfspace above. While that upper halfspace properly
models the near-surface troposphere of the Earth, let us replace it with a free-space:
ε0, µ0 and σ0 = 0.

  

   ∼0

   θ

 

Note that electromagnetic waves are transverse vector waves; the field vectors, ~E(~r, t)

and ~H(~r, t), are, therefore, parallel to the plane of the wavefront and orthogonal to
one another. As long as these conditions are satisfied, they may be polarized in
any compatible way. One simple polarization might be with the ~H(~r, t) horizontally
aligned on the wavefront, oscillating in and out of the diagram. This would describe a
linear, horizontal ~H-polarization. The ~E would, then, lie in the plane of the diagram
along a wavefront.
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2.1 Electromagnetic waves

Recalling the following of Maxwell’s equations,

∇ × ~E +
∂ ~B

∂t
= 0,

∇ × ~H −
∂ ~D

∂t
= ~J,

we obtain the curl (∇×) of both as

∇ × ∇ × ~E +
∂(∇ × ~B)

∂t
= 0,

∇ × ∇ × ~H −
∂(∇ × ~D)

∂t
= ∇ × ~J.

Noting that ~B = µ ~H , ~D = ε ~E and ~J = σ ~E, and if in our space of interest µ, ε
and σ do not vary with time or place, we rewrite,

∇ × ∇ × ~E + µ
∂(∇ × ~H)

∂t
= 0,

substitute for ∇ × ~H = ε∂ ~E/∂t − σ ~E to obtain

∇ × ∇ × ~E + µε
∂2 ~E

∂t2
+ µσ

∂ ~E

∂t
= 0.

Since ∇ × ∇ × ~A = ∇∇ · ~A − ∇2 ~A and if there is no free charge density as there
cannot be in any conductive material, ∇ · ~D = ε∇ · ~E = 0,

∇2 ~E − µε
∂2 ~E

∂t2
− µσ

∂ ~E

∂t
= 0.
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Through similar arguments, noting that, generally, ∇ · ~B = µ∇ · ~H = 0, we also
obtain

∇2 ~H − µε
∂2 ~H

∂t2
− µσ

∂ ~H

∂t
= 0.

We recognize these as two diffusive wave equations.

2.1.1 σ = 0

In a “non-conductive medium”, σ = 0 and these equations reduce as:

∇2 ~E − µε
∂2 ~E

∂t2
= 0,

∇2 ~H − µε
∂2 ~H

∂t2
= 0.

You might recognize these as describing a non-diffusive wave characterized by a speed
of propagation,

c =
1

√
µε

and in free space

co =
1

√
µoεo

.

You might recall from our earliest lectures that µo = 4π ×10−7 Wb ·A−1 ·m−1. co is
now a defined constant in physics which determines, among other things, the length
of 1m; it also determines the constant of dielectric permittivity of free space which is
a derived constant as εo = 1/(µoc

2
o) = 8.854187817... × 10−12F ·m−1.

So far, I have not been clear as to whether we have described our wave equation
in terms of time and space or as its Fourier transform in terms of frequency and
wavenumber. Let us, then, at place ~r, define ~E(~r, t) = ~E(~r, ω)e−iωt where, now,
~E(~r, ω) is the current complex-valued amplitude of the ω-frequency component of

the ~E-field at place ~r. Note the subtle change of font (~E vs ~E) to indicate the Fourier
transformed amplitude. Also note that in reference to the notation used earlier for
the Fourier amplitude transformed with respect to both time and place,

~E(~r, ω) = ~E(~k, ω)ei~k·~r,

~H(~r, ω) = ~H(~k, ω)ei~k·~r.

Substituting into the wave equation in terms of the electric field above,

∇2~E(~r, ω) + ω2µε~E(~r, ω) = 0.
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2.1.2 σ 6= 0

If we were again to allow for non-zero conductivity in our medium, this equation
extends as:

∇2~E(~r, ω) + (ω2µε − iωσ)~E(~r, ω) = 0.

Forming γ2 = iωσ − ω2µε and suppressing the position-frequency dependence for
tidiness,

∇2~E = γ2~E

and similarly
∇2~H = γ2~H.

You might note that ω2/γ2 has units of a speed-squared, the speed of the propagation
of the EM wave. This measure in complex-valued in presence of a conductive medium.

Now, reconsidering Maxwell’s equations, above, namely,

∇ × ~E = −
∂ ~B

∂t
= −µ

∂ ~H

∂t

and

∇ × ~H =
∂ ~D

∂t
+ ~J = ε

∂ ~E

∂t
+ σ ~E

in terms of their Fourier amplitudes,

∇ × ~E = iωµ~H

and
∇ × ~H = (−iωε + σ)~E.

2.2 Wave impedance tensor

Describing ~E : [ Ex Ey Ez ] and ~H : [ Hx Hy Hz ], we can form the wave impedance
tensor

Zij =

 Ex/Hx Ex/Hy Ex/Hz

Ey/Hx Ey/Hy Ey/Hz

Ez/Hx Ez/Hy Ez/Hz


and the wave-tilt tensors here, in terms of the E-field vector components

Wij =

 1 Ex/Ey Ex/Ez

Ey/Ex 1 Ey/Ez

Ez/Ex Ez/Ey 1

 .
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The various ratios which determine the elements of the wave impedance tensor as
measured at the ground surface can be inverted (in simple cases) for subsurface elec-
tromagnetic structure1. We measure the component E? and H? on the surface to
determine several elements of the impedance tensor. We can also, similarly, obtain
near surface measures of the E-field components to obtain the wave-tilt tensor. This
can be done using air-borne instrumentation provided we fly closer to the ground
than one wavelength equivalent of the electromagnetic wave field above the surface.

We are now prepared with the mathematical formalism to describe a simple magneto-
telluric problem. Let assume that we have an electromagnetic wave propagating in
the x−z-direction intercepting the surface and refracting into the half-space ground
as it propagates. Let us presume that we have no variations in the EM-fields or the
ground properties with respect to the y-direction (that is, in and out of the page in
the diagram above). That is all differentials of the forms ∂( )/∂y = ∂2( )/∂y2 = 0.

2.2.1 H-polarization

We shall deal with a particular polarization of the incident wave (horizontal H-
polarization: Hx = Hz = 0). Then, as the E-field vector is necessarily orthogonal
to the wave’s propagation direction and to the H-field, Ey = 0.

∂2Hy

∂x2
+

∂2Hy

∂y
= γ2Hy,

−
∂Hy

∂z
= (−iωε + σ)Ex,

∂Hy

∂x
= (−iωε + σ)Ez.

Note that Hy, Ex and Ez can and do vary with respect to place and especially with
respect the z-direction. Boundary conditions on our free-space to half-space surface
determine how.

In this case where variations in the y-direction have been suppressed, partial differ-
ential equations of the form (

∇2 − γ2
)
Ψ = 0

have general solutions of form

Ψ = (c1e
−ikzz + c2e

+ikzz)(c3e
−ikxx + c4e

+ikxx)

with γ2 = k2
x + k2

y. While it might not be obvious to you, our propagation vector,
~k : [ kx 0 kz ] determines the direction and wavenumber of our EM-wave. Boundary

1 NRCan’s Magnetic Plotting Service shows such component electric and magnetic field compo-
nents as measured at several geomagnetic observatories around the country: Geomagnetism Canada
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conditions appropriate to our problem bring us to the particular solutions. In our
diagram, the incoming wave is travelling in x-positive direction so that

Hy = (H−e−ikzz + H+eikzz)eikxx.

The equivalent E-field vectors are then simply,

Ex =
ikz

−iωε + σ

(
H−e−ikzz − H+eikzz

)
eikxx,

Ez =
ikx

−iωε + σ

(
H−e−ikzz + H+eikzz

)
eikxx.

2.2.2 Response of a homogeneous halfspace to Hy polarization

We have all the tools, now, to apply boundary conditions to a particular problem.
As example, we shall look at the response of a homogeneous halfspace ground to an
impinging EM-wave that is horizontally polarized. The wave is propagating in the
x−direction; it is plane-polarized with its ~H : [ 0 Hy 0 ].

The condition that must hold at the boundary between the overlying freespace and the
lower halfspace reduce to the following (n̂ is the unit normal vector on the boundary):

n̂·( ~B0− ~B1) = 0, continuity of the magnetic induction field normal to the boundary,

n̂ × (~E0 − ~E1) = 0, continuity of the electric field tangential to the boundary,

n̂ × ( ~H0 − ~H1) = Js, continuity of magnetic field tangential to the boundary with
a possible current density Js, and
n̂ · ( ~D0 − ~D1) = ρs, continuity of the dielectric field normal to the boundary with
possible surface charge ρs.

The subscripts “ 0” and “ 1” designate the fields in the freespace and ground half-
space respectively.

9


	Theory: Maxwell's equations
	Boundary conditions

	Simple magneto-tellurics
	Electromagnetic waves
	= 0
	=0

	Wave impedance tensor
	H-polarization
	Response of a homogeneous halfspace to Hy polarization



