
Inverse data modelling

1 Auto-regressive data model

Given I values of a time series, xi; i = 1, 2, ... I, modelled as an auto-regressive process,
continuously innovated, we expect that we can obtain each current xi as a weighted sum of
past values plus a current innovation:

xi =

J∑
j=1

a jxi− j + pi.

For a purely resonant system, a sufficient number of coefficients a j; j = 1, 2, ... J, J < I,
can, in principle, well describe the system. Generally, in data modelling, the continuing
innovation, pi; i = 1, 2, ... I, is explicitly unknown but we may either know or assume
some of its statistical properties. In the simplest of cases, we may know the actual form of
pi as, for example, either an Dirac impulse or a Heaviside step function. In the case of dis-
cretely sampled data, we describe the Dirac impulse as p1 = 1, with pi = 0; i = 2, 3, ... I
and the Heaviside step as p1 = 1; i = 1, 2, ... I. Where the innovation is a continuous
process and unknown to us except in its expected statistical properties, we describe those
properties in accomplishing the inversion. In the simpler of these cases, we often assume
that pi; i = 1, 2, ... I is a White Gaussian or purely random process with expected values

E < p2
i >= σ

2
p. E < pi pj >= 0; i , j.

Such a process is said to be uncorrelated with variance σ2
p. Note that for this process

E < p2
i
>= σ2

p for all i; it is a stationary process which means that its statistical prop-
erties do not evolve with time or index. In modelling with this innovation, we seek that
innovation that fully describes the data having the minimum variance. If we have some
knowledge that the innovation is not purely random but rather has values that correlate with
each other, we introduce the correlation through a correlation matrix, sometimes called the
variance-covariance matrix. For any n, m, this matrix is formed with its m, n element as
E < pm pn >. For real-valued innovation, it is a symmetric matrix, for complex-valued
innovation, it is conjugate-symmetric. The correlation matrix, V, that describes an uncor-
related innovation reduces to the identity matrix, I as E < pi pj >≡ 0, for i , j. For a
White Gaussian innovation we can form an estimate of E < p2

i
> as

Ê < p2
i
> = 1

I ~p
T · I · ~p

with the vector ~p T = [ p1 p2 p3 ... pI] being the ordered I values of the innovation.
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Writing the autoregression equation, above, in linear algebraic form while noting that the
first predictable value is xJ+1:
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Reforming this vector-matrix equation symbolically:

~x = X · ~a + ~p.

We seek the vector of autoregression coefficients, ~a, that minimizes the expected value of
the innovation energy, ~p T ~p, essentially the sum of all squared values of pi; i = J+1, J =
2, ... I.

Form, now,
~p = ~x − X · ~a,

so that
~p T ~p = (~x T

− ~a T
· X T) · (~x − X · ~a)

= ~x T
· ~x − ~x T

· X · ~a − ~a T
· X T

· ~x + ~a T
· X T

· X · ~a.

Minimizing ~p T ~p with respect to ~a T, noting that ∂~a/∂~a T = 0, we obtain

∂(~p T ~p)

∂~a T
= −X T

· ~x + X T
· X · ~a = 0.

Solve for
~a = (X T

· X) −1 X T
· ~x.

The innovation is often called the prediction error and the J-coefficient series a j, the pre-
diction error filter or PEF. Knowing the a j we can deconvolve our data series xi to find
the innovation. We may regard this innovation as that unknown series that excites the au-
toregression operator that describes the linear system of observation.

We can extend this development to deal with self-correlated innovations to find, then,

~a = (X T
· V · X) −1 X T

· V · ~x.
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We may factor V = U T · U where U is upper diagonal matrix and, hence, U T, lower
diagonal. We, then minimize the ~p TU T · U · ~p with respect to ~a T as before.

You may note that we can write the equation in solution for ~a immediately preceding

~a = (Y T
· Y) −1 Y T

· ~y

where, now, Y = U · X and ~y = U · ~x. That is, we pre-filter our data with coefficients
determined by those of the matrix U. A rougher, perhaps ad hoc, approach to accomplish-
ing this is to filter the raw data series xi, i = 1, 2, ... I with a filter that would produce
the equivalent of a White Gaussian process from that of the innovation process that we
actually have or seek. For example, if our data model were to be innovated by a Brownian
process, we could simply differentiate (by either running or central finite differences) our
data series.

Note, the development above holds as well for complex-valued data series. One need
only recall that for complex vectors and matrices, one uses conjugate transpose wherever
transpose appears in the linear algebra above.

2 Auto-regressive spectral analysis

In classical AR modelling, we separate our time series into an excitation (the innovation)
and the system model (described by our AR coefficients). We have modelled our innovation
as minimum power white Gaussian noise. Then all the spectral character of the datum
time series must be described by the system function because the innovation is already
colourless/flat/white. We can determine the power density spectrum of the time series
knowing our sample innovation energy, ~̂p T ~̂p which we can determine as

~̂p = ~x − X · ~̂a

where ~̂a is our solution vector. We determine the power density spectrum as:

Sx( f ) =
1

I−J ·
~̂p T ~̂p

F 2{1 − ~̂a}
.

The symbol F represents the Fourier transform, the discrete Fourier transform in the case
of a digital sequence. The argument of this Fourier transform is a K-length sequence

{ 1, −â1, −â2, −â3, ... − âJ , 0, 0 0, ... },

where K ≥ J + 1. While all the available spectral information is obtained with K = J + 1,
it is usually seen to show a more “attractive” spectrum if K � J+1. One might reasonably
choose a K convenient for the scaling of the discrete Fourier transform one is using and for
the apparent resolution of the resulting power density spectrum, Sx( f ) desired.
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3 Auto-regressive-integrated modelling

It is not uncommon that a time series is better considered as being innovated by a random
walk or brown series. It is common to model, for example, stock-market indices in this
manner. The random walk models the apparent accumulating evolutionary increase or
decrease in numerical values of market indices. In market modelling, we often seek to
find the ~̂a-predictor that might be inherent in the market runs. The brown character of the
presumed innovation is removed by creating a sequence of back-differences:

x′i = xi − xi−1.

We, then, model as above (classical AR-inversion) for a white Gaussian innovation using
the difference sequence x′

i
, i = 2, 3, ... I.

If we are interested in the power density spectrum of the original sequence, xi i = 1, 2, 3, ... I,
we would simply compute the Sx( f ) as above and rescale it frequency-by-frequency by
multiplying each frequency obtained by 1/ f 2. Perhaps it is clear that in so doing, we face a
singularity at f = 0. This arises as we have implicitly violated a strict condition of power
spectral analysis: the sequence must be a sample of a “stationary process”. By that we
mean that the process from which our sample sequence is derived must have finite vari-
ance. A random walk explicity fails this condition as its variance increases with the length
of the process. As a work around, we would normally avoid rescaling for frequencies near
0. That is we band-limit our spectrum for f > fmin.

In principle, what we did in obtaining back differences was to obtain a pre-filtered version
of our original brown-innovated sequence. This back differencing removes the accumula-
tion or integration inherent in the brown innovation. This differencing filter handles brown
innovation. What of flicker-noise innovation for which the spectral weighting from the in-
novation obtains Sp f ∼ f rather than Sp f ∼ f 2 as in the case of brown innovation? We
would need to describe a pre-filter process that obtained a power density scaling by 1/ f ;
the back differencing scales by 1/ f 2. We can design such filters but they tend to be quite
long in numbers of coefficients if we are to obtain a good representation of the spectrum of
power densities.

4 Complex-valued data

All the linear algebraic development above works directly for complex-valued data series.
Geophysical, physical and electrical time-series are very often most easily described in
terms of complex-valued time series.

The only accommodation in the linear algebraic description of the AR-inverse theory de-
veloped so far is to note that wherever one has used the transpose of a vector or matrix, one
must use the conjugate transpose. Often the conjugate transpose is noted with a † (dagger)
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rather than the capitalized T. So, for example in the case of an expectation of uncorrelated,
minimum variance innovation, ~p†~p minimum,

~a = (Y † · Y) −1 Y † · ~y.
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