
TECTONICS, VOL. 17, NO. 5, PAGES 780-801, OCTOBER 1998 

Kinematic history of the Laramide orogeny in latitudes 
35ø-49øN, western United States 
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Abstract. The kinematic history of the Rocky Mountain 
foreland and adjacent areas is computed back to 85 Ma, using 
virtually all the structural, paleomagnetic, and stress data in 
the literature. A continuous velocity field is fit to the data in 
each time step by weighted least squares, and this velocity is 
integrated back through time. As proposed by Hamilton 
[1981], the net movement of the Colorado Plateau was a 
clockwise rotation about a pole in northern Texas; but the ro- 
tation was less (3 ø) than some have inferred from paleomag- 
netism. The Laramide orogeny occurred during 75-35 Ma, 
with peak Colorado Plateau velocities of 1.5 mm yr -1 during 
60-55 Ma. The mean azimuth of foreland velocity and mean 
direction of foreland shortening was stable at 40 ø for most of 
the orogeny, increasing to 55 ø in 50-40 Ma; the counter- 
clockwise rotation of shortening directions proposed by some 
previous authors is incorrect. Comparing the computed histo- 
ries of foreland flow speed and direction with the known mo- 
tions of the Kula and Farallon plates confirms that the 
Laramide orogeny had a different mechanism from the early 
Sevier orogeny: it was driven by basal traction during an in- 
terval of horizontal subduction, not by edge forces due to 
coastal subduction or the spreading of the western cordillera 
or by accretion of terranes to the coast. Tentatively, a minor 
clockwise rotation of shortening directions at 50 Ma may rec- 
ord the passage of an active Kula-Farallon transform within 
the subducted slab. 

1. Introduction 

The west central part of the United States (Figure 1) has 
been deformed by three overlapping events since Cretaceous 
time. The Sevier orogeny lasted from about 119 Ma [Heller 
and Paola, 1989] to 50 Ma [DeCelles and Mitra, 1995] and 
resulted in displacement of thick plates of sedimentary rock 
eastward for tens of kilometers on bedding-plane thrusts with 
west dipping ramps. The Laramide orogeny lasted from about 
75 to 35 Ma [Dickinson et al., 1988] and involved thrusting 
of the Precambrian metamorphic basement in a variety of di- 
rections on faults of 25o-30 ø dip with throws up to 13 km. 
Extension began about 49 Ma [Constenius, 1996] in the for- 
mer Sevier orogenic belt, and after 29 Ma it also affected the 
Rocky Mountain foreland in New Mexico and Colorado 
where the Rio Grande rift was formed. 

The Laramide orogeny did not involve large strains or dis- 
placements, but it is of particular interest for several reasons. 
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First, it occurred in a plate interior, so it has no simple expla- 
nation in terms of plate tectonics. Second, it occurred in a re- 
gion with a continuous cover of Phanerozoic section whose 
surface was initially near sea level, so that all strains and up- 
lifts are especially well recorded. Third, the literature on this 
subject is mature, and the chance for future discoveries of 
first-order structures seems small. The Laramide orogeny is 
the primary focus of this paper, although the calculation nec- 
essarily includes those parts of the Sevier orogeny and the 
Tertiary extension that overlapped it. 

During this time, eastern North America was stable. Oce- 
anic lithosphere was subducting at the western margin of 
North America, as it had been since the Jurassic. The Kula 
plate was subducting along the north part of the margin, and 
the Farallon plate was subducting along the south part; the 
past history of the triple junction between them is controver- 
sial [Engebretson et al., 1985]. This subduction may have in- 
fluenced the Rocky Mountain foreland by generating 
horizontal stresses in the lithosphere at the margin. Alterna- 
tively, there may have been an episode of horizontal subduc- 
tion of one or both oceanic plates, allowing direct stress 
transfer to the base of the lithosphere in the foreland [Dickin- 
son and Snyder, 1978]. A major goal of this paper is to refine 
the kinematics so as to permit testing of these hypotheses. 

In this paper, I apply a new algorithm to compute the 
kinematics of the orogeny in time steps of 5 m.y. back to 85 
Ma. The details of the method are described in Appendix A. 
Broadly, however, the algorithm has the five following steps: 
(1) Geologic and paleomagnetic data concerning finite dis- 
placements, rotations, or strains over long time periods are 
converted to rate estimates. An uncertainty is assigned to each 
rate estimate. (2) The velocities of all the nodes in a finite 
element grid are determined by solving a linear system, which 
is based on weighted least squares fitting of the velocity 
model to the tentative rates. (3) These velocities are integrated 
backward over time, using 5 m.y. steps. The program moves 
the nodes of the finite element grid, the present state lines, or 
other fiducial markers and the positions of all data concerning 
earlier times. In particular, paleostress indicators are restored 
to their original azimuths. (4) When the history is complete, 
each geologic and paleomagnetic datum on finite strain, dis- 
placement, or rotation is compared to the history predicted by 
the model. In general, the model rate of strain, displacement, 
or rotation will not be uniform over the time window of the 

datum, as initially assumed. New target rates are now as- 
signed, based on the time-history from the previous model but 
adjusted by a factor to achieve the correct total strain, dis- 
placement, or rotation. (5) The entire computation is now re- 
peated, beginning with step 2. In all, 50 iterations of the 
history were performed. 
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Figure 1. Location of the Laramide orogen in relation to other Cretaceous-Tertiary tectonic provinces in pre- 
sent coordinates. The Great Plains is the upwarped margin of the stable part of the North America plate. The 
Laramide orogen (or Rocky Mountain foreland) is a region of basement thrusts overlain by forced folds. The 
Colorado Plateau has similar structure but underwent less strain. The Sevier orogen (or Sevier belt or Over- 
thrust belt) contains east vergent ramp/flat thrusts in thick sedimentary sequences. The Canadian Rocky 
Mountains are similar in structure to the Sevier orogen. The Hidalgo orogen is intermediate in character be- 
tween the Laramide and the Sevier and may be structurally connected to both (dashed lines). The zone of 
Tertiary extension includes the Basin and Range province and the Rio Grande rift (RGR). The zone of dis- 
placed terranes includes Baja California and allochthanous terranes in British Columbia and Washington. 
The Explorer, Juan de Fuca, Gorda, and Cocos plates are remnants of the large Farallon plate. Bold rectangle 
shows the study area and location of Figures 2-6. 

At the end of the computation, we have estimated histories 
of the slip on each fault and the drift and rotation of each pa- 
leomagnetic site. More important, we have an estimated ve- 
locity field through time for the whole region, which can be 
examined for insights into the ultimate causes of the orogeny 
and its relation to nearby events in North America and/or the 
Pacific basin. 

This method is a type of "inverse" tectonic modeling, 
which computes velocities from geologic data. It is concep- 
tually and procedurally distinct from previous efforts to 
model the Laramide orogeny [Bird, 1988, 1989, 1992], which 
were "forward" or "dynamic" models based on physics and 
assumed rheologies. Inverse tectonic modeling is relatively 
new. Saucier and Humphreys [1993] modeled velocities in 
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California from fault slip rates and geodesy. Holt and Haines 
[1993] used seismicity to solve for a continuous velocity field 
in Asia, while Avouac and Tapponnier [1993] divided Asia 
into four rigid blocks, and Peltzer and Saucier [1996] mod- 
eled its fault network in more detail. In comparison, this 
method is unique in its ability to handle long histories, finite 
strain, many faults, paleomagnetic data, and stress-direction 
data. 

2. Data and Computation 

The first application of this method is a solution for the 
Rocky Mountain foreland province of the western United 
States (latitudes 35ø-49øN, longitudes 103ø-113øW) since 85 
Ma (Santonian). I chose this region for an initial trial because 
the tectonics are relatively simple and noncontroversial and 
because they are described in a mature literature of manage- 
able size. 

I attempted to collect all the significant information from 
the geologic literature through the end of 1997. While read- 
ing, I excluded estimates of age or strain that were based on 
regional consistency arguments, so that the requirement of in- 
dependent errors for each datum might be fulfilled. Useful 
data were found in 262 papers; their bibliographic citations 
are listed in one the files described in Appendix B. This data 
set is rich in fault offsets (307 faults) and has a good number 
of paleomagnetic sites (220), but has fewer stress indicators 
(71 sites) and only a few balanced cross sections (11). Most 
of the fault offsets (Figure 2) are dip-slip; although I include 
all the dextral strike-slip faults proposed by Chapin and 
Cather [1981] or by Chapin [1983], their joint offset is lim- 
ited to about 20 km by the stratigraphic constraints of Wood- 
ward et al. [1997]. Where the literature specifies amounts of 
crustal shortening or extension across dip-slip faults, these 
figures are used directly. When only the stratigraphic throw 
was available, it is converted to horizontal motion by assum- 
ing fault dips of 25 ø for thrusts and 65 ø for normal faults. 

Paleomagnetic paleolatitude anomalies and vertical-axis 
rotations are derived from the database of McElhinny and 
Lock [1995], using only rocks magnetized since 85 Ma. I ex- 
clude samples with secondary magnetizations, those with un- 
known structural corrections, and all sedimentary rocks 
(because of the possibility of compaction-induced inclination 
anomalies). The North America polar wander path used to 
compute anomalies is from Van Alstine and de Boer [1978]. 
None of the paleolatitude anomalies exceeds twice the size of 
its standard deviation, and probably none of them is signifi- 
cant. Most of the computed vertical-axis rotations are less 
than 34 ø (except in some thrust plates of the Sevier belt). 
Therefore it is not surprising that there are few features of the 
solution driven entirely by paleomagnetic results. 

Because of the shortage of conventional stress indicators 
for some of the time steps in this application, I treat faults as 
additional stress indicators (in their first phase of movement), 
with the greatest horizontal principal compression normal to 
thrusts and parallel to normal faults. Each of these rather un- 
reliable stress indicators is assigned a 90% confidence range 
of+45 ø. 

The finite element grid has 787 elements of mean area 
1.6 x 109 m 2. It is fixed to the velocity reference frame of 

eastern North America on the eastern side and on the eastern 

part of the northern side. The history back to 85 Ma was 
computed using 5 m.y. time steps. This history was iterated 
50 times, using initial rate uncertainties ( cr * ) of 4 x 10 -12 m 
s -1 (0.12 mm yr -1) for fault offsets and balanced cross-section 
extensions, 2x10 -lø m s -• (0.06 ø m.y.-1) for paleolatitude 
shifts, and 1.4x10 -•6 radians/s (0.25 ø m.y.-1) for vertical- 
axis rotations. In a typical iteration, about 30% of the rate 
histories were automatically adjusted; cumulatively, 64% 
were adjusted. (As discussed in Appendix A, some rate histo- 
ries cannot be adjusted because of the danger of numerical in- 
stability.) The rate uncertainties in the final iterations were 
based only on the individual uncertainties in displacement or 
rotation tabulated in the files named in Appendix B. The un- 
certainty in the nominally zero strain rate of regions without 
active faults was 5x 10 -17 s -1 (0.16% m.y.-•) in the Rocky 
Mountain foreland and Great Plains but slightly larger 
(lx10 -•6 s -1) in the Sevier belt, and was largest (2x10 --•6 
s -1) in areas now obscured by volcanic cover of the Yellow- 
stone-Snake River Plain hotspot (blank area in Figure 2). 

At the conclusion of the 50 iterations, all model predictions 
were compared to corresponding offset, strain, or rotation 
data to check the size of residuals. These were generally of 
acceptable size, measured in terms of the assigned uncertain- 
ties of the data. Fault offset data were fit with an RMS resid- 

ual of 0.91 standard deviation and an average residual of 0.39 
standard deviation; 5% of residuals exceeded two standard 
deviations. Paleolatitude anomalies were fit with an RMS re- 

sidual of 0.81 standard deviation and an average residual of 
0.67 standard deviation; none exceeded two standard devia- 
tions. Vertical-axis rotations were not fit quite as well, with 
an RMS residual of 1.34 standard deviations and an average 
residual of 1.05 standard deviations; 12% of residuals ex- 
ceeded two standard deviations. Overall, the built-in "reason- 
ableness" constraints of consistent stress direction and 

minimum deformation in unfaulted areas did not prevent the 
model from fitting the data within its assigned uncertainties. 

3. Results 

Velocities and fault slip rates from selected times in the 
solution are shown in Figures 3 through 6. As expected, the 
continuing Sevier orogeny in the Overthrust Belt of Montana- 
Idaho-Wyoming-Utah is the only activity during the 85-75 
Ma time steps. The Laramide orogeny began during 75-70 
Ma with thrusting concentrated in western Wyoming. It ex- 
panded eastward to the Black Hills of South Dakota- 
Wyoming by 55 Ma. Rates of thrusting in the foreland peaked 
during 60-55 Ma and then declined smoothly to an end during 
40-35 Ma. These general patterns are well known and can be 
inferred without modeling; therefore the rest of this discus- 
sion will focus on details of the velocity field, which is the 
most novel result. 

One of the most notable features is a clockwise rotation of 

the Colorado Plateau region during 75-50 Ma, the time of the 
highest velocity magnitudes. Since the Plateau simultane- 
ously moved NE, its net motion with respect to stable North 
America since 85 Ma can be described as a clockwise rotation 

of 2.6ø-3.1 ø about an Euler pole near (34øN, 103øW) in the 
northern part of Texas. This is almost exactly the result of 
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Figure 2. Location map with traces of 307 Late Cretaceous-Tertiary faults used in this computation. Medium 
shaded line is the outer boundary of the finite element grid and model region. Wide shaded lines approxi- 
mately separate the Sevier belt, Colorado Plateau, and Rocky Mountain foreland regions for purposes of dis- 
cussion. The area with no faults around (44øN, 112øW) is obscured by volcanic cover of the Snake River 
Plain-Yellowstone hotspot track. Abbreviations for states are as follows: AZ, Arizona; CO, Colorado; ID, 
Idaho; MT, Montana; ND, North Dakota; NE, Nebraska; NM, New Mexico; NV, Nevada; SD, South Dakota; 
UT, Utah; WY, Wyoming. This is a transverse Mercator projection with prime meridian 109øW. 
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Figure 3. Paleotectonics during 80-75 Ma (Late Cretaceous: Campanian). Velocity vectors are relative to 
eastern North America. (Note that velocities are multiplied by 50 Ma, not 5 Ma, for legibility.) Width of fault 
traces is proportional to the magnitude of the horizontal component of the velocity change across the fault, 

r-I . . and traces are labeled with this velocity change in mm y . (The fast mowng P•oneer-Kelly-Grasshopper 
thrust in Montana is shown shaded to improve legibility.) State lines and grid outline are restored; latitude 
and longitude ticks in the margin show the undeformed reference frame of eastern North America. At this 
time, the only activity is the Sevier orogeny in the Overthrust Belt. 
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Figure 4. Paleotectonics during 75-70 Ma (Late Cretaceous: Campanian-Maastrichtian). Conventions are as 
in Figure 3. The Sevier orogeny continues. In this earliest part of the Laramide orogeny, activity was cen- 
tered in western Wyoming but also spread south to central Colorado-New Mexico and north to central Mon- 
tana. (The age of monoclines in the Colorado Plateau is poorly known; therefore these structures have similar 
activity in all time steps until 35 Ma.) 
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Figure 5. Paleotectonics at 60-55 Ma (late Paleocene-early Eocene). Conventions are as in Figure 3. This is 
the time of highest mean velocity in the Rocky Mountain foreland and Colorado Plateau. Laramide shorten- 
ing in all regions (eastward to the Black Hills of South Dakota) was simultaneous with late Sevier orogeny in 
the western parts of the region. Note the rotational component Of the motion of the Colorado Plateau. 
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Figure 6. Paleotectonics during 45-40 Ma (middle Eocene). Conventions are as in Figure 3. The Sevier 
orogeny is over. Foreland velocities are only half as large as in Figure 5, and velocity vectors have rotated 
clockwise about 15 ø. The late Laramide structures are generally those farthest to the east and south. Note the 
beginning of extension in northwest Montana. 
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Hamilton [1981], who estimated the rotation as 2o-4 ø during 
the Laramide orogeny alone, with a very similar pole posi- 
tion. 

This net rotation result may help to resolve the controversy 
that has grown up about the interpretation of paleomagnetic 
data from the Colorado Plateau. Originally, Steiner [1986] 
found post-Triassic clockwise rotation of 11 ø+4ø and attrib- 
uted the excess over Hamilton's figure to post-Laramide rota- 
tion. Bryan and Gordon [1990] interpreted all available 
Jurassic and earlier data as showing less post-Jurassic clock- 
wise rotation: 5.0o+2.4 ø. Bazard and Butler [1991] reviewed 
the literature and preferred values of 3.5o-6.3 ø . However, 
Kent and Witte [1992] reopened the controversy by amending 
the North America polar wander path to one that implies 
Colorado Plateau rotation of 13.5ø+3.5 ø. Molina Garza et al. 

[1998] responded with a calculation showing only 5.1ø+3.8 ø 
of rotation when data from the Triassic rift basins of eastern 

North America are excluded. 

This new result (3 ø ) is largely independent of the data 
quoted in these papers, since my method is only able to use 

sites where the rocks have been magnetized during the time 
span of the computation (0-85 Ma), and there are only four 
such sites on the Colorado Plateau (none with statistically 
significant rotations). It is also probably more precise than 
any of the paleomagnetic studies since it is based primarily on 
net fault offsets, which have mostly been measured to preci- 
sions of 1 km or better. (It is true that converting some fault 
throws to fault heaves requires the assumption of fault dip; 
however, in order to increase this rotation result by a factor of 
2, it would be necessary to change the assumed dip of thrusts 
from 25 ø to 13% which is implausible for an average dip of all 
Laramide thrusts throughout the brittle upper crust.) 

In the rest of the computed history, rotation is minimal. 
The velocity field of the Rocky Mountain foreland is simple 
enough in most time steps to be reasonably described by a 
mean azimuth and a mean velocity, and this is done in Fig- 
ures 7 (azimuth history) and 8 (velocity history). The mean 
azimuth is computed by summing the velocity components v 
(southward) and w (eastward) separately over all nodes of 
the Colorado Plateau, Rocky Mountain foreland, and Great 
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Figure 7. Computed history of the mean azimuth of crustal flow in the Rocky Mountain Foreland and Colo- 
rado Plateau (squares), compared to the azimuth histories expected for possible causes. (Crustal flow azi- 
muths are in parentheses until 75 Ma because velocities are very low and these azimuths are probably not 
reliable.) Curves labeled "Farallon" and "Kula/Pacific" are the azimuths of the velocities of those plates with 
respect to stable North America at (38øN, 109øW) according to stage poles from Engebretson et aL [1985]. 
Curve labeled "Gries [1983]" shows the inferred history of shortening direction that she attributed to changes 
in the direction of the absolute velocity of North America. Curve labeled "Livaccari [1991]" shows the in- 
ferred history of shortening direction that he attributed to the rise and fall of segments of the western cordil- 
lera. No model is satisfactory for all times. Probably the shortening direction was controlled by slip 
partitioning and slumping of the cordillera before 75 Ma (early Sevier orogeny) but was then controlled by 
coupling to one or both subducted oceanic plates during 75-35 Ma (Laramide orogeny). There is a suggestion 
that azimuth was controlled by the Kula plate before 50 Ma and by the Farallon plate after 50 Ma. 



BIRD: KINEMATIC HISTORY OF THE LARAMIDE OROGENY 789 

lOO% 
Farallon 

Kula/Pacific 

Contact area 

RMS velocity 

O% 

80 70 60 50 40 30 20 10 0Ma 

Figure 8. Computed history of the RMS velocity of crustal flow in the Rocky Mountain Foreland and Colo- 
rado Plateau (squares), compared to the histories of the magnitudes of possible causes. All curves are nor- 
malized to a maximum of 100%. The maximum of RMS velocity was 1.06 mm yr -1. Curves labeled 
"Farallon" and "KuladPacific" are the velocity histories of those plates with respect to eastern North America; 
their maxima were 155 and 190 mm yr -1, respectively. Curve labeled "contact area" is the inferred area of 
contact between North America and subducted oceanic slab(s), in the latitude range of the United States, with 
maximum 1.85x106 km 2, according to Figure 31 of Bird [1992] which was derived from volcanic-arc posi- 
tions mapped by Dickinson and Snyder [1978] and slab window areas from Dickinson and Snyder [1979]. 
The area of contact is the best predictor of the rate of Laramide deformation, especially if they were linked by 
a power law relationship. 

Plains (but not the Sevier belt). I then define the mean azi- 
muth as (•y) -- ATAN2(Y'. w,-• v), where ATAN2 is the two- 
argument inverse tangent of Fortran. Since the eastern edge of 
the model is fixed, the mean velocity azimuth is also the 
mean shortening direction. The mean foreland velocity is the 
root-mean-square (RMS) value across the same area (the 
whole model region, except the Sevier belt). 

These histories are important new information which can 
be used to choose among the models that have been proposed 
for the driving mechanism of the Laramide orogeny. At least 
five different concepts have been proposed in the literature: 
(1) Laramide compression was parallel to the absolute motion 
of North America [Gries, 1983]; (2) the Laramide orogeny 
was caused by the subduction of an oceanic plateau under 
North America [Livaccari et al., 1981; Henderson et al., 
1984]; (3) the orogeny was caused by the accretion of the 
"Baja British Columbia" superterrane and its subsequent 
northward drift [Maxson and Tikoff, 1996]; (4) the driving 
force was transmitted from subduction zones on the western 

margin, mediated by a hot mobile cordillera [Livaccari, 
1991]; or (5) the orogeny was caused by the basal drag of 
horizontally subducting oceanic plates [Dickinson and Sny- 
der, 1978; Bird, 1988]. 

Gries' [1983] concept was based on a pattern inferred from 
a regional synthesis: that shortening until 65 Ma was along 
azimuths of 72ø-90 ø, while shortening during 55-40 Ma was 
along azimuths of 0ø-12 ø. During the transition, a rapid 
counterclockwise rotation of stress was inferred. This history 
was explained as a result of the change in absolute motion of 
North America from westward to southward. My results (Fig- 

ure 7) do not show any counterclockwise rotation after the 
beginning of the Laramide at 75 Ma; in fact, there is a 15 ø 
clockwise rotation at about 50 Ma. The profound difference 
between our results stems from the different age ranges that 
we assigned to individual structures; using more complete 
data, Dickinson et al. [1988] also found that some of Gries' 
age assignments were in need of revision. 

The subduction of an oceanic plateau [Livaccari et al., 
1981; Henderson et al., 1984] may have occurred, but it can- 
not be the sole cause of the Laramide orogeny because the du- 
ration of the orogeny was too great. As these results show, 
continuous orogeny persisted at least from 75 until 40-35 Ma. 
During this time, any feature attached to the Farallon plate or 
the Kula plate moved about 4900 km with respect to North 
America. In contrast, the distance from the continental margin 
(former trench) to the Black Hills was probably no more than 
the present distance of 1550 km. Therefore the hypothetical 
plateau could not have remained long enough in a position 
where it could apply compression to the foreland. If subduc- 
tion of an oceanic plateau occurred, it might have been an in- 
direct cause of the orogeny by initiating a period of horizontal 
subduction (discussed below). 

A related idea was presented by Maxson and Tikoff[1996]: 
the Laramide orogeny was due to lateral forces from the ac- 
cretion and northward drift of the "Baja British Columbia" 
superterrane on the western margin of North America. They 
did not explain why these events should affect the stress state 
of the continental interior. However, one might reasonably 
expect the greatest stress pulse at the time of initial accretion, 
at 94 Ma, and one might expect it to radiate from the region 
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of accretion in present northern Mexico. However, my results 
show that NE directed shortening occurred strictly after 75 
Ma. Furthermore, there was no steady and systematic rotation 
of shortening directions, as one would expect if the source of 
the stress were moving northward from Mexico to Canada 
during 94-40 Ma. Therefore the accretion and motion of 
"Baja British Columbia" may have occurred, but they were 
not the causes of the Laramide orogeny. 

Like Gries [1983], Livaccari [1991] inferred a rapid 
change in shortening direction during the Laramide orogeny, 
from azimuths of 680-76 ø before 65 Ma to azimuths of 20 ø- 

28 ø afterward. Livaccari interpreted the pattern he saw as the 
result of successive collapse of first the northern and then the 
southern pans of a western cordillera with an elevated, weak, 
extending core. Thus he was extending the mechanical ideas 
of Burchfiel and Davis [1975]. Actually, any model in which 
the lateral force for the Laramide orogeny is transmitted 
through a high, weak cordillera is also implicitly a model in 
which this force is generated by North America/Farallon or 
North America/Kula coupling in a coastal subduction zone. 
(If it were not, the cordillera would be unconfined on the west 
and would collapse rapidly in an enormous landslide.) Fortu- 
nately, while the elevation history of the cordillera is elusive 
and debatable, the history of relative plate motions with re- 
spect to North America is known [e.g., durdy, 1984; Enge- 
bretson et al., 1985]. If we temporarily postpone 
consideration of horizontal subduction, the other most plausi- 
ble reasons for increased transmission of horizontal compres- 
sion across the subduction zone would be a decrease in trench 

depth or an increase in viscous shear coupling. The first factor 
was undoubtedly present, since the ages of the pans of the re- 
constructed oceanic plates that were entering the trench be- 
came gradually less throughout the Tertiary. However, this 
younging was continuous, and it is difficult to see how it 
could have given rise to an orogeny with a well-defined be- 
ginning and end. Therefore, in this class of models it is neces- 
sary to appeal to increased viscous shear stress transmission 
across the subduction thrust, probably caused by increased 
relative plate velocity. Comparing the normalized velocity 
histories from Engebretson et al. [1985] in Figure 8, we see 
that increased Farallon/North America velocity at 70 Ma 
comes a little too late to explain the beginning of the 
Laramide orogeny, and increased Kula/North America veloc- 
ity comes 20 m.y. too late. There is also a problem about the 
end of the Laramide, since both Farallon and Kula velocities 
with respect to North America peaked at 55-45 Ma, a time 
when the orogeny was waning. Using a different plate recon- 
struction scheme (imposing Antarctic deformation and ig- 
noring hotspots), Jurdy [1984] proposed a slightly different 
history of Farallon/North America relative velocities. This 
alternate velocity history has velocities exceeding 100 mm 
yr -1 only at 60 Ma and peaking at 50 Ma. Thus it also peaks 
too late to correlate well with my history of velocity. 

The remaining proposal is that the Laramide orogeny was 
caused by increased shear coupling between North America 
and the Farallon and/or Kula plate(s) caused by increased 
contact area during an episode of horizontal subduction. 
Horizontal subduction was originally invoked to explain the 
inland migration of the volcanic arc [Snyder et al., 1976; 
Dickinson and Snyder, 1978], and this gives an independent 

basis for estimating the changing area of contact. The curve 
shown in Figure 8 is computed from Figure 31 of Bird 
[1992], which, in turn, was based on Figures 3-5 of Dickinson 
and Snyder [1978]. It shows that contact area probably in- 
creased by a factor of 4 very rapidly during 80-75 Ma and 
that the area remained large until 55 Ma and declined con- 
tinuously thereafter. Of the curves considered, this is the best 
match to the velocity history computed in this paper. It is true 
that the velocity history is more strongly peaked than the 
history of contact area. However, this is an expected conse- 
quence of the nonlinear rheology of continental lithosphere. If 
total horizontal force transmission was proportional to contact 
area, then all velocities and strain rates within North America 
would be expected to be proportional to some power of the 
contact area. 

The directions of foreland velocity and shortening (Figure 
7) are also reasonably consistent with the directions of oce- 
anic plate motion after 75 Ma. (Of course, there are possible 
circumstances, such as anisotropy and heterogeneity, which 
could cause the surface velocity to diverge from the direction 
of basal drag, so this coincidence is not proof.) The foreland 
velocity and shortening azimuth of 40 ø that was maintained 
during 75-50 Ma is very close to the predicted azimuth of 
Kula plate motion. During 50-35 Ma, however, the azimuth 
of foreland velocity better matches the azimuth of the Faral- 
lon plate. There is a model already published that (implicitly) 
makes a similar prediction: Engebretson et al. [1985] at- 
tempted to explain northward transport of coastal terranes by 
their "southern option" model, in which the Kula plate was 
subducting beneath the United States from 85-59 Ma. During 
59-45 Ma (in their model), a long Kula-Farallon transform 
was subducted at the coast and moved gradually under the 
Rocky Mountains, changing the identity and azimuth of the 
flat slab from Kula to Farallon (Figure 9). The transition in 
velocity azimuth that I see around 50 Ma is an excellent 
match to their suggestion. 

In conclusion, the best explanation for Cretaceous-Tertiary 
orogenies in the western United States seems to be a compos- 
ite one. In the early Sevier orogeny (before 75 Ma), driving 
force was transmitted through a weak, elevated cordillera, as 
argued by Burchfiel and Davis [1975] and Livaccari [1991]. 
Perhaps coast-parallel shear components were absorbed in 
coastal strike-slip systems and cordilleran deformation [e.g., 
Tikoffand de Saint Blanquat, 1997], and only normal stresses 
perpendicular to the cordillera were transmitted inland (Figure 
9). However, the Laramide orogeny was a distinct and differ- 
ent event, during which the bulk of the driving force was ap- 
plied to the base of North America by horizontally subducting 
slabs of oceanic lithosphere. Consequently, the azimuth of 
shortening was controlled by the azimuth of relative plate 
motion, while the rate of shortening was controlled by the 
changing area of contact between plates. More tentatively, it 
appears that the change in stress directions that occurred 
around 50 Ma may have marked the passage of an active 
Kula-Farallon transform within the horizontal subducting 
slabs. 

4. Conclusions 

A new paleotectonic and palinspastic method was applied 
to the Rocky Mountain foreland region, using reasonably 
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complete data from the literature through publication year 
1997. Velocities, strain rates, and fault-slip histories were 
computed back to 85 Ma in 5 m.y. time steps. As expected, 
the solution displays the last stages of the Sevier orogeny 
during 85-50 Ma, the Laramide orogeny during 75-35 Ma, 
and Neogene extension spreading southward after 50 Ma. The 
solution also provides estimated slip histories of each fault 
during each event; 64% of these are different from the simple 
constant-rate histories that were assumed at the beginning of 
the computation. However, the most interesting result is the 
estimate of the horizontal velocity field over time. 

Foreland velocities peaked at 1.5 mm yr -1 during 60-55 
Ma, when the Colorado Plateau was rotating clockwise 
around an Euler pole in the northern part of Texas, as pre- 
dicted by Hamilton [1981]. The computed total rotation of the 
plateau about a vertical axis since 85 Ma is only 3 ø, which is 
less than claimed by some authors working with paleomag- 
netic poles of older rocks but is the same as the lower limit 
quoted by Bryan and Gordon [ 1990]. 

During the Laramide orogeny in the foreland, the mean 
shortening azimuth was steady at 40 ø until 50 Ma and then 
rotated clockwise to 55ø; the counterclockwise stress rotation 
proposed by Gries [1983] and by Livaccari [1991] did not 
occur. The mean velocity directions (with respect to eastern 
North America) are similar to the known relative velocities of 
the Kula and Farallon plates, which were subducting beneath 
North America. However, the history of velocity and strain 
rate magnitudes does not match well with the histories of the 
relative velocities of these oceanic plates. Instead, the rates of 
Laramide deformation were more closely related to the 
changing area of contact between North America and the oce- 
anic plates, confirming that the most likely driving mecha- 
nism for the orogeny was the transmission of basal shear 
stress during an episode of horizontal subduction. 

Appendix A' Algorithm 

A1. Least Squares Formalism 

I assume that all geologic and paleomagnetic data that con- 
strain displacement, strain, and/or rotation in a particular time 
step have been transformed to scalar rate estimates r[. (The 
subscript k = 1,...,K identifies the datum, and the superscript 
n identifies the time step.) Let the corresponding scalar rate 
predictions derived from the velocity field of the finite ele- 
ment model in a particular timestep be called p•. (In the re- 
mainder of this section, I will discuss only a single 
computational time step, so the superscript n will be sup- 
pressed.) I further assume that each scalar rate r k has an un- 
certainty that can be approximated by a Gaussian probability 
distribution with standard deviation crk and that the errors in 
these rates are independent. (A Gaussian probability distri- 
bution is reasonably appropriate for the numerator in each 
rate, which is an amount of strain or displacement. It is not 
appropriate for the denominator, the elapsed time, which 
typically comes with a hard upper limit based on cross-cutting 
relations but without any lower limit. Because of this, I will 
iterate the solution of the entire history in a way that allows 
additional degrees of freedom in each rate history; this 
method is described below. However, in each individual it- 

eration, the elapsed time is held constant, giving a Gaussian 
distribution for the rate.) 

Finally, I assume that there is a probability 0 < q• < 1 that 
each datum is relevant to the time step. Normally, q• is unity 
because irrelevant data are simply omitted from the list 
k = 1,...,K. However, in the cases of certain paleostress data, 
fractional q• are required. The natural logarithm of the den- 
sity of the joint probability that the velocity model matches 
all the relevant rates is then formed from the individual prob- 
ability densities (O) as 

S --In [cI)(p/• = r/• = •qk ln[cI)(p/, = r/• )]= 
k=l 

- Y" q• 2cr• + ln(cr•)+ In 2xf• . (1) k=l 

I refer to this quantity S as the "score" of the velocity solu- 
tion, which is to be maximized. That is, the sum of squares of 
the relevant prediction errors (each divided by the variance of 
the corresponding rate) is to be minimized. 

On the surface of a spherical planet with radius R, I define 
a coordinate system of colatitude (0) measured southward 
from the north pole and longitude (q•) measured eastward 
from the prime meridian. The unknowns in each velocity so- 
lution are the horizontal 0 components and • components of 
the velocity of the surface. The predicted rates pk can be ex- 
pressed as a linear combination of the velocity components v 
(southward) and w (eastward) at each of the d nodes of a finite 
element grid: 

d 

Pl• = cl• + Z (fu vj + gini wj) (2) 
j=l 

With this linear relation, S is a quadratic form in the nodal- 
velocity-component values vj and wj, so it is maximized by 
finding the single stationary point in multi dimensional ve- 
locity space where 

&S &S 
•=0=•; i=l,...,d. (3) 

Algebraically, this leads to a 2J x 2J linear system, which 
can be thought of as being partitioned into four submatrices 
times two subvectors equaling two subvectors' 

I•• ] D0. jL•y-y j = [-•1 (4) 
using the abbreviations 

k =1 

Fi:•gla(rl•-cl•) 
k =1 

(5) 

(6) 
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A2. Boundary Conditions 

The equations stated above are singular in the absence of 
boundary conditions. Some edge(s) of the model must be 
fixed (or moved in a predetermined way) to prov;.de a veloc- 
ity reference frame. I replace the row equations that state that 
S is stationary with respect to variations in these nodal veloc- 
ity components with simpler equations stating the desired 
values of these components. 

This method permits only velocity boundary conditions 
not stress boundary conditions. Along each axis (O or •b), one 
boundary should be constrained and one left free (because 
integrating strain information to find velocities is like solving 
first-order differential equations). When one margin of a con- 
tinent is facing a subduction zone, it is best to leave that 
boundary free. 

A3. A Priori or Pseudo Data 

An essential context for all the geologic data showing lo- 
cally intense straining is that they should be overlaid on a set 
of a priori data (or "pseudo data") stating that in other places 
the strain rate is close to zero. An appropriate formalism is to 
assign a zero target strain rate, with a statistical uncertainty. A 
larger standard deviation should be attached to this null hy- 
pothesis in complex regions where unknown faults and oro- 
genic phases might have been buried or overlooked. 

To implement these constraints, the score S of any velocity 
solution, which is to be optimized, is first augmented by a 
term 

AS =-WJJ ø6020 + &OO&44 + &•q• + &a2q• dU (7) 
3/2 U 

where W is the weight coefficient for all pseudo data (in 
units of m'2), la is the standard deviation of the (nominally 
zero) strain rate (per second), and U is the area without active 
faults. In practice, any finite element that has no active fault 
crossing it is a part of U. Weighting by area is used to make 
this new term roughly independent of local variations in finite 
element size. However, an appropriate value for the weight 
coefficient W is approximately the inverse of the mean of the 
areas of all finite elements, as explained below. 

This term has the effect of causing unfaulted areas to be- 
have as Newtonian viscous sheets of lithosphere. The algo- 
rithm will adjust the velocity in each time step to minimize 
the area integral of squared strain rates for these elements; 
this is exactly the result one obtains by beginning from the 
momentum equation (in the absence of horizontal forces), 
adopting a linear rheology, and solving for velocity with in- 
homogeneous boundary conditions. 

ß 

The 2 x 2 strain rate tensor • on the spherical surface is 
calculated by summing spatial derivatives of the nodal func- 
tions. The nodal functions that I use were introduced by Kong 
and Bird [1995] and shown to satisfy the requirements of 
horizontality, continuity, and completeness: 

s ' = r i ]' , G2(O,4)lLwj 
(8) 

In this notation, the superscriptj on the vector nodal function 

•x j or nodal function component GxJ, y identifies the node 
that has unit velocity (all other nodes having zero velocity in 
this particular nodal function). Subscri,•t x- 1 indicates the 
nodal function associated with unit southward velocity v; sub- 
script x - 2 indicates the nodal function associated with unit 
eastward velocity w. Subscript y- 1 indicates the southward 
or O component of the vector nodal function (•x j , and sub- 
script y - 2 indicates the eastward or qb component. 

The coefficients of the linear system are augmented by 

W L 

R t=l 

W L 

W L 

R 

1,1 + CSC0 1,2 +• 1,1 + 

67G['1 GJ + •1,1 •-- cot0 • •,• + 

tttae 2 csc0 ø•i;2 + tan,0/csc0 •2 + t•0) 
I•CSC 0 •[,14 •1,2 G[2 •( •' •' G' ) -'-//cscO •,• + 1,2 1,2 
[2( • • tan0)( • • tan0 

lit a t 

•tt a t 

2,1 + csc0 2,2 

cot0 G ,1 + • + 

2 csc0 6T•1'2 + csc0 2,2 + 2,1 + 
8• tanOil 8• tanO 

8• 80 tan 0 •CSC 0 2,1 4 2,2 2,2 8• 80 tanO 

2,1 +C$C0 6•2'1 2,2 + 2,1 + 

I i t j G2,1)•cscO67G2,2+G2J,11+ 2 csc0-•+ tan0•, • tan0) 
CSC00•2'1 4 61•'2 G•'2- csc0 2,1 + 2,2 2,2 

d4 dO tan0 d4 dO tan0 

(9) 

where • = 1,...,L identifies the "nonfaulting" elements com- 
prising U, with individual areas a t . In practice, area integrals 
within each element are performed numerically, using seven 
Gauss points with associated weights [Zienkiewicz, 1971 ]. 

A4. Use of Balanced Cross Sections 

Many structural geologists publish restored cross sections 
from which they estimate the amount of shortening or exten- 
sion along the line of section. Dividing the amount of exten- 
sion (compression is negative extension) by the time available 
gives the relative velocity component (along the line of sec- 
tion) for the endpoints, which is the rate estimate r k . If the 
endpoints of the section are marked by position vectors bk 
and d•, then c• = 0 and 
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f/q.=q j - _ qj -' 1,1 (b/,)cos ?(b k ) - 1,1 (d/,)cos ?(d/, 
G j - • G j (•)sin?(•/,) 1,2 (b/,)sin r(b ) + 
gkj = G j ([•)cos ?(•) - G j (•)cos 2,1 2,1 

G j ([•k)sin ?(/•/,) + G j (•)sin ?(•/,) 2,2 2,2 

(10) 

where 7(b•) and 7(dk) are the forward azimuths at each end 
of the directed great circle arc b•-• d• (each measured 
clockwise from north). 

A5. Use of Fault-Slip Data 

A large fraction of the available data concern offsets on 
faults. While offset is actually a vector, I use only the larger 
of the dip-slip or strike-slip components and treat this as a 
scalar datum. This is because the strike-slip component of 
dominantly dip slip faults is rarely known, while any dip-slip 
on strike-slip faults is irrelevant to relative horizontal veloci- 
ties. After division by the time available, this scalar offset be- 
comes a scalar relative velocity component across the fault. 

When a fault is long enough to cross several finite ele- 
ments, I impose the same slip and slip rate in each element. In 
the case of rigid microplate tectonics, where each fault con- 
nects to other faults at triple junctions, this method is rea- 
sonably accurate. The other end-member is the case where no 
faults connect, but all terminate within the domain. In that 
case, each fault might be expected (on the basis of crack the- 
ory for linear materials) to have an ellipsoidal profile of slip 
versus length. Such "elliptical" faults would have a mean slip 
which is only 79% (x/4) of their maximum slip. Thus my 
method might overstate strain by 27% in some cases where 
faults do not connect and where the geologic offsets reported 
are the maximum offsets. However, if the geologic offsets are 
considered to be determined at random points of convenience, 
then once again there is no systematic error. 

If every fault extended continuously across the model from 
boundary to boundary, one could simply use its slip rate as a 
constraint on the relative velocity of the nodes on opposite 
sides of the fault. However, the number of faults in many ap- 
plications is so great that such customized grids are prohibi- 
tively expensive to work with. Thus I have developed a more 
general approach, which allows any number of faults to cross 
a given finite element. 

For each finite element, there are four steps: (1) Form the 
target strain rate tensor for that element as the sum of the 
strain rate tensors implied by all the active fault segments 
cutting that element; (2) Form the matrix of covariances of 
the strain rate components in that element as the sum of the 
covariances added by all the active fault segments, plus the 
small covariance of the strain rate in the continuum blocks 

between them; (3) Diagonalize the covariance matrix to find 
three principal axes (in strain rate space) along which the un- 
certainties are independent and also rotate the target strain 
rates into this new coordinate system; (4) Add these three in- 
dependent targets as scalar data with known uncertainties in 
the global system of equations. ß 

The strain rate tensor in the horizontal plane • is a sec- 
ond-rank tensor of size 2x2. I simplify the notation by treat- 
ing the three independent components of the strain rate tensor 

( boo = bN$, bo4 = bSE, b44 = hEW ) as a one-subscript vector 
(bin; m= 1,2,3 ), permiRing me to write the covariance of 
strain rates as a 3x3 matrix. If all the active fault segments 
that cut (even pa•ay) through one finite element are num- 
bered z = 1,...,Z, then I express the strain rate vector in the 
element as a linear combination of their scalar slip rates Sz: 

z 

bm = ZHzmsz; m= 1,2,3. (11) 

The covariance matrix of the strain rate components is com- 
posed of •o pa•s: the continuum compliance common to all 
pa•s of the lithosphere (see section A3) and the terms arising 
from the standard deviations 6s z of the scalar slip rates Sz: 

0, 
k-2/3 0 4/3 

To find H z (the pa•ial derivative of element strain rate 
with respect to slip rate of one active fault), I make the sim- 
pli•ing restriction that no node lies exactly on a fault. Also, I 
slightly straighten the traces of any hult segment that crosses 
the same element bounda• more than once. Then, each hult 
segment (with its prQected extensions, if necessa•) must 
separate one node of the element from the other •o. Let u z 
be the index number of the isolated node. If node u z is on the 
right side of the hult segment (when looking along its azi- 
muth D, measured clockwise from noah), then I define the 
variable •z as +1; othe•ise, it is -1. Let r z be the fraction 
of the width of the element that is cut by the fault segment: 
0<rz•l. 

In the case of a strike-slip fault, the scalar slip rate s z is 
defined as the right-lateral offset divided by the time avail- 
able. (Le•-lateral offsets are negative right-lateral offsets.) 
Then 

/•z = r]z •cz 
R 

•cOSTz - sinTz, 

•,f cOS rz •,• sin rz • 
.... + COS •z - 

• &• sin0 &• sin0 &0 , 
• O• cos rz - O• sin rz •2.2 sin ?z - 

80 t•O 

• G•f cos 7• - G2,• sin 7• 
df sin0 df sin0 t•0 

(13a) 

In the case of dip-slip faulting, it is most convenient to define 
s z as the net horizontal extension perpendicular to the fault 
trace, divided by the time available. (Thrusting is considered 
to be negative extension.) In the case of detachment faulting, 
net horizontal extension is the distance from the breakaway 
fault in the footwall to the tip of the hanging wall (recon- 
structed if necessary), regardless of whether the fault slipped 
at a low angle or, alternatively, slipped at a high angle and 
then rotated during further extension. In the more common 
case of dip-slip faulting without horizontal-axis rotation of 
footwall or hanging wall, net horizontal extension is the rela- 
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tive vertical offset (throw) times the cotangent of the fault 
dip. My convention is that normal and detachment faulting 
have positive s z and thrust faults have negative values. Then, 

r Z -- 

sin 7z + cos 7z , 

6•2,1 COS2' z oT•,• sin 7_•_z + • • + sin 7z + 
qzrz l • • sinO • sin0 •0 , 

• G• sin + • •2,2 ?z G2, 2 cOS?z 
COS •z - 

• t•O 

u• G• sin •z + u• sinrz •2,2 cOSrz G2, • cOSrz 
sinO • sinO t•O 

(13b) 

The next step i•s to find the three positive eigenvalues (Ah; 
h = 1,2,3) of V and their corresponding unit eigenvectors 
(Ahm). These eigenvectors indicate strain rate patterns that 
are statistically uncorrelated; they have target amplitudes of 
•m Ahm and standard deviations of X/Ah , respectively. 
Each of the three targets is now imposed as a scalar datum in 
the global system of equations. The corresponding coeffi- 
cients of the nodal velocities are 

1,1 1,1 

fo.= I Ahl+ csc0 6¾ 
+ csc0 1,2 + 

2,1 2,1 

c?0 A hl + csc0 c¾ 
gkj = • 6T]j 

+ [csc0 2,2 + 

61Gj Gj I + 1,2 1,2, Ah2 
c?0 tan0 

Ah3 TM 
tan 0 

6T]j Gj I + 2,2 2,•2 Ah 2 
c?0 tan0 

2,1 Ah 3 
tan0 

(14) 

(Note that k equals h plus a constant that indicates how many 
data have previously been incorporated into the system.) 

Once the global velocity solution has been found for any 
time step, it is necessary to do a local optimization calculation 
within each faulting element to find the predicted (model) 
rates Pz at which each fault ( z = 1,...,Z ) is slipping, as well 
as the residual strain rate •c m which is due to deformation of 
the continuum around the faults. The total strain rate of the 
element must be the sum of the continuum and the fault con- 

tributions: 

z 

ern + Y', Hzmpz = •rn ' (15) 

This problem is different from the global problem because 
the •rn vector is known. Because of this constraint, it is an 
algebraic convenience to use the Lagrange multiplier method 
with three temporary weight variables ( g'l, g'2, and g'3 ). De- 
fine the local score (in one element) that is to be optimized as 

S'---•', (pz-sz)2 b•2.. . 2 
(as,) 2 /,e 2 

3 / 'C 

•', g'rn em+ •Hzmpz-•m (16) 
m=l z=l 

where •s z is the standard deviation of each slip rate accord- 
ing to the input data. Then, to find a local solution that has all 
hult rates as close as possible to their goals, while the contin- 
uum strain rate is close to zero and the total strain rate is cor- 

rect, find the stationa• point of S' with respect to variations 
in the Pz, the .c and the Cm in turn, leading to a linear 
system. The slip rate p• that is finally recorded (for hult k 
in time step n) is the average of the rates Pz in all the ele- 
ments the fault passes through, where the averaging weights 
are the segment lengths Pez ß 

The method described here for incorporating hults effec- 
tively multiplies each known hult offset into roughly 1•2 
scalar data per finite element crossed by the trace. In addition, 
1•2 pseudo data per element crossed are used to express the a 
priori assumption of continuum stiffness. Therefore, for pari• 
between hulting elements and nonhulting elements, the sug- 
gested value of W is the inverse of the mean area of finite 
elements. 

A6. Use of Paleomagnetic Data 

I assume that the paleomagnetic data set is restricted to 
sites that include some geologic or geochemical indication of 
the orientation of the paleohorizontal plane at the time of 
magnetization and that have been properly corrected for local 
structure. It is also best to exclude certain sedimentary rocks 
that are known to be especially prone to postmagnetization 
compaction, which can produce a nontectonic inclination 
anomaly. 

The interpretation of paleomagnetic inclination and decli- 
nation data in terms of north-south displacement and rotation 
requires the definition of a reference polar wander path. It is 
necessary to use the same velocity reference frame for polar 
wander and for velocity boundary conditions. 

The inclination of a sample yields its magnetic paleolati- 
tude according to a simple dipole model for the paleofield. 
This is converted to a paleolatitude anomaly by comparison 
with the polar wander path. Multiplying this paleolatitude 
anomaly by the radius of the planet and dividing by the length 
of time available results in the mean velocity component in 
the paleodirection of magnetic south (at the time of magneti- 
zation). This becomes the rate estimate r/•. For comparison, 
the model prediction is formed using 

f lq' = Gj G j sin 7 1,1 ½os•,- 1,2 

g•,j - G j G j sin • 2,1½øs]/- 2,2 
(17) 

and c• = 0, where the nodal functions GxJ, y are evaluated at 
the datum location and y is the azimuth (measured clock- 
wise) of north pointing paleomagnetic declinations (at the 
time of magnetization) with respect to present geographic 
north (in the reference frame of the undeformed part of the 
continent) at the datum location. 
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While the magnetic declination of a sample is clearly re- 
lated to its history of rotation about a local vertical axis, the 
relationship is nonunique and model-dependent. In general, 
the declination anomaly can only be converted to a vertical- 
axis rotation if the displacement of the sample is negligible or 
approximately known. Here I assume that these questions 
have been resolved by the assumption or approximation most 
appropriate to the particular problem and that estimated net 
rotations about the local vertical axis (A 7) are available as 
input data. I also assume that the sense of large rotations has 
been decided in advance based on regional tectonics. 

These values determine the average rotation rates 
r k = CO(k datum) = Ay/t, where A7 is the vertical-axis rotation 
in going from past to present (counterclockwise positive) and 
t is the age of the magnetization. The interpretation of these 
rotations requires some assumptions about the shape and the 
stiffness of the bodies carrying the remnant magnetization; I 
assume that the outcrops selected for paleomagnetic sampling 
were rigid inclusions of equidimensional shape embedded in 
a deforming continuum. Therefore the rotation rate that the 
magnetization would be predicted to record is 

Pk --w? ødel) z •+•-csc . (18) 
2R tan0 c*0 

Consequently, the model predictions are formed using c•: = 0 
and 

1,2 + 1,2_CSC 0 1,1 f/q = •-tanO dO 

as/' 2,2 + 2,2-csc0 2,1 
gkJ=• tan0 RO 

(19) 

The methods described in sections A3 and A5 effectively 
multiply the continuum-stiffness assumption into one scalar 
datum per finite element and multiply each fault offset into 
1-2 scalar data per finite element traversed. If the finite ele- 
ment grid has many elements, the paleomagnetic data will re- 
quire a similar weighting in order to avoid being 
overwhelmed in the global solution. Accordingly, both f and 
g functions of (17) and (19) should be multiplied by a dimen- 
sionless weight factor P which is common to all paleomag- 
netic data. A suggested value for P is the square root of twice 
the number of finite elements, which is the mean number of 
elements traversed by a fault crossing the whole grid. Then, a 
paleomagnetic datum indicating an exotic terrane will receive 
the same procedural weight as a fault-offset datum on the ter- 
rane-bounding fault, and the outcome will depend on the 
relative values and their uncertainties. Different values of P 

can be used to investigate solutions in which paleomagnetic 
data are either less or more prominent. 

A7. Use of Stress Directions 

One principal stress direction must always be perpendicu- 
lar to the free surface of the Earth or approximately vertical. 
Thus the orientation of the stress tensor is described by the 
azimuth (7; measured clockwise from north) of the most 
compressive horizontal principal stress (•lh)' This direction 

is geologically recorded as the strike of igneous dikes or other 
vertical veins that break through any laterally homogeneous, 
isotropic rock. In some cases, a population of faults with 
slickensides can be statistically analyzed to determine the 
stress direction [e.g., Gephart, 1990]. 

To relate this information about stress to my kinematic 
model, I approximate the lithosphere as horizontally isotropic, 
so that the principal directions of stress are the same as the 
principal directions of strain rate. There may be an error of up 
to 35 ø associated with this assumption; even so, I believe that 
the solutions will typically be more accurate and reasonable 
than those that ignore stress data. 

Once we know the azimuth of •31h, we can use this as the 
direction of a new local horizontal axis d and also define a 

perpendicular horizontal axis /3' (right-handed; d x/3' = ;). 
In these coordinates, the requirement that d is the most com- 
pressive horizontal principal strain rate direction can be stated 
in two parts: ha? = 0 and •aa < •flfl' In terms of the global 
coordinate system, the first becomes 

•o• cos(2r) + o•oo - b• sin(2r) = o. (20) 2 

In terms of derivatives of velocity, this is 

•+ 2R c¾ W0 t0' cos(2r) + 

(c• csc0 c• v )sin(2r)} =0, dO d• tan0 
(21) 

so the coefficients of the linear system can be computed from 
the factors 

1 

csc0 2,1 + 2,2 2,2 cos(27) + 
d4 dO t-•nnb 

2,1 _ csc0 2,•2 2,1 sin(27) 
dO d4 tan0 

(22) 

if we use c•: = 0 and a rate estimate r•: = 0. The difficulty is 
in deciding what standard deviation cr k to associate with this 
constraint ha? = 0, since we have transformed the constraint 
from one concerning an angle to one concerning a strain rate 
component. When the calculation is first starting and there are 
no strain rates known as yet, a purely arbitrary small strain 
rate uncertainty ( • ) must be assigned as cry:. However, when 
strain rate estimates are available from a previous time step 
(or from a previous iteration of the current time step), it is 

)2 /2 better to use cry: = 2(87)(b• + (boo - b• /4) • , where the 
symbol g7 indicates the standard deviation (in radians) of 
the azimuth ¾ of the direction 31h' This suggests that the ve- 
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locity solution should be iterated within each time step; in this 
project I have used four iterations per time step. 

The second requirement was the inequality baa < 
During each iteration of the solution, I evaluate the strain 
rates baa and b?? to see if this is true. If not, then in future 
iterations I impose an additional constraint b?? = baa + 
where • is a small (positive) strain rate difference which 
must be arbitrarily chosen. In terms of the global coordinates, 

(• - •oo)COS(2r) + 2bo• sin(2?) = •. (23) 
This can be expressed in terms of velocity components as 

(24) 

so the coefficients of the linear system can be computed from 

< 

the factors 

cT•l Gl 6T•j / CSC0 1,2 -I 1,1 1,1. COS(2y)+ 
•Y• tan0 

cscO 1,! + 1,2 1,2, sin(2y) 
c¾ c?O tanO 

csc0 2,2 + 2,1 2,1. cos(2y)+ 

cscO 2,1 + 2,.•_2 2,2. sin(2y) 
•{b c*O tanO 

. 

(25) 
1 

gkj = •' 

and ck = 0 if we create a new rate estimate r• = •. The same 
value of • is also used to set the standard deviation for this 
constraint as cr• = (0.83)•, so that the Gaussian distribution 
(which my method forces me to use) will best approximate 
the desired Heaviside distribution near the origin. 

Paleostress data are different from structural and paleo- 
magnetic data because they are not integral constraints over 
time but are momentary samples. A thin igneous dike may 
form in a day. Therefore it is necessary to distinguish between 
two types of published references on paleostress. The more 
desirable type summarizes many paleostress indicators of dif- 
ferent ages to show that •'lh has remained constant over 
some time interval from age t 2 to age q. These data should 
be applied in each time step of that interval 
( t 1/At < n _< t 2 / At ) with full relevance; that is, qJ = 1. The 
less desirable type of reference concerns paleostress indica- 
tors whose age can only be constrained to be less than t 2 but 
more than q. These are relevant to one of the time steps in 
the interval, but it is not clear to which. These should be ap- 
plied in all time steps of the interval but with reduced weight 
due to their reduced (mean) relevance; that is, 
q• = inf {1, At/(t 2 - t 1)}. 

Ideally, very complete data sets on paleostress direction 
would impose a "smoothness" constraint on the velocity so- 
lutions, mimicking the smoothness that forward models have 

as a result of solving the momentum equation. In practice, 
there are rarely more than a dozen relevant paleostress indi- 
cators in any given time step. A related problem is that if each 
paleostress indicator were only compared to the strain rate 
tensor in a single finite element, then its influence on the so- 
lution would decrease as the finite element grid was refined. I 
attempt to solve both problems by interpolating paleostress 
directions (with associated uncertainties) for every finite ele- 
ment in the grid, based on the relevant paleostress data. The 
interpolation is by nonparametric statistics based on the spa- 
tial autocorrelation of the present stress field as represented 
by the World Stress Map [Zoback, 1992]. The interpolation 
method is given by Bird and Li [1996]; I use the simpler of 
their two methods in which the data are considered independ- 
ent, because this permits the weighting of the original data by 
their relevance ( q• ) values during the interpolation. 

In cases where stress-direction data are sparse, it may be 
desirable or necessary to use active fault segments as addi- 
tional indicators, assuming •lh to be perpendicular to 
thrusts, etc. Only the first phase of movement on a fault 
should be used to indicate stress, because in later times the 
fault is an inherited plane of weakness. 

A8. Integration Over Time 

I use the "predictor/corrector" method of time integration, 
as in earlier forward dynamic models of the history of North 
America [Bird, 1988; 1992]. Each time step begins with an 
explicit "prediction" of new node locations. Using these, all 
nodal function derivatives, coefficients, and velocities are re- 
computed for the same time step. Then, the "predicted" ve- 
locity for that time step is "corrected" by adding one half of 
the (vector) change between the solutions. The node locations 
are corrected accordingly. Bird [1989] presented studies of 
the accuracy of this method; for practical purposes, it is suffi- 
cient to use time steps of-l-5 m.y. 

A9. Iterative Revision of Rate Histories 

Because the events in geologic history that can be dated 
are not always those we would choose, many data about strain 
or displacement come with loose time windows, bracketing 
but not specifying the true duration of deformation. However, 
adjacent data with better constraints should cause strain rates 
to rise in the correct period. If the model-predicted rate for 
any datum is larger than the tentative goal rate, this is proba- 
bly an indication that the goal rates for that datum should be 
revised to permit more rapid deformation in a portion of the 
time window. 

My method is to assign new target rates (r/• r • (for datum k 
in each time step n), based on the predicted rates p] from the 
previous model but adjusted by a constant factor to achieve 
the correct total strain, displacement, or rotation. Assuming a 
sign convention such that all goal rates are positive, 

Zrff sup½•:,O), (26) (rff•= n• su;(p•, ,0) 
where the asterisk on the left indicates new goals for the next 
iteration, and all other quantities are old values from the pre- 
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vious iteration. (The truncation of the actual rates at zero is 
used in order to forestall a possible instability in the compu- 
tation in which the denominator might become very small be- 
cause of a predicted history that includes an unanticipated 
sense reversal.) 

There are data for which this formula is inadequate: those 
whose time window extends back before the earliest time 

considered in the palinspastic reconstruction. My method for 
such cases is based on the assumption that strain and dis- 
placement in the earlier (unmodeled) period had the same 
sign as the net strain or displacement in the time period of the 
model. Therefore, if the model predicts too much total strain 
in the modeled interval, the targets must be reduced using 
(26) in order to prevent implied earlier rates from switching 
sign. However, if the model predicts too little strain, then the 
targets are not adjusted, because strain of the same sense in 
the unmodeled period can make up the difference. 

Another possible problem with method (26) is that in some 
cases it can cause numerical instability (i.e., self-amplification 
of small rate variations). The method is stable when applied 
to data with a constructive interaction (e.g., two fault seg- 
ments that together form a microplate boundary), neutrally 
stable for isolated data that interact only with the a priori 
stiffness, and unstable for groups of data with a destructive 
interaction (e.g., two parallel thrust faults). In the unstable 
case, the repeated application of (26) leads to a history in 
which only one of the data has a nonzero rate in any particu- 
lar time step. This is undesirable because the details of their 
rate histories arise from the solution process and not from the 
data. To prevent this, I only apply (26) to those data (and in 
those iterations) where the predicted rate in at least one time 
step exceeds the corresponding goal rate; this is a sign of a 
constructive interaction. 

The entire computation is now repeated, beginning at the 
present. In many cases, data that have tight time constraints 
are able to pinpoint the time of an orogeny locally, but their 
influence is diluted by other data with broad time windows. 
Thus the peak in strain rate (as a function of time) in the 
computed history is initially modest. However, with iteration 
the tentative rates for the latter data will be adjusted to reflect 
a shorter, more intense event. 

A10. Idealized Test Cases 

The program Restore (Appendix B) which realizes this al- 
gorithm has been successfully tested in the following cases: 

1. With no data except the a priori constraint and with a 
few boundary nodes fixed, the grid remains static. 

2. With no data except the a priori constraint and with 
velocity boundary conditions at two nodes that imply plate 
rotation about a local Euler pole, the grid rotates as a rigid 
plate with no deformation. During rotation at angular rate 
10 -15 s -1, internal strain rates are less than 2x 10 -19 sq. 

3. Rotation of this "rigid" plate through finite time steps 
does not add significant error. For example, when the whole 
grid is rotated 60 ø in steps of 6 ø around a local Euler pole 
with the predictor/corrector method, all fictitious strains are _< 
0.8%, much less than the fictitious strains of 5.6% = 
[cos(6ø)] -1ø- 1 that would result from explicit time integra- 

tion. 

4. Regions with no data behave as isotropic sheets of in- 
compressible viscous material when forced to deform. For 
example, when a domain of 27 ø longitude range and 10 ø lati- 
tude range lying along the equator is stretched E-W, the strain 
in the center can be described by Coo = œrr =- œ•/2. When 
the uncertainty of the a priori zero strain rate (•) is laterally 
heterogeneous, computed strain rates (06) are higher in re- 
gions of higher •. However, the scaling in this case is 
06 .•/t 2 not 06 .•/t as one might guess. 

5. When a single strike-slip fault that is an arc of a small 
circle cuts across the domain from one side to the other, the 
resulting solution has relative rotation of two rigid plates 
about the pole of the small circle. When a single dip-slip fault 
that is an arc of a great circle cuts across the domain from one 
side to the other, the resulting solution has relative rotation of 
two rigid plates about a point 90 ø away on the great circle. 

6. When an active fault terminates in the model interior 

there is a conflict between the datum showing fault activity 
and the a priori assumption of no intraplate deformation. If 
the plate stiffness (W//t 2 ) is small and the fault's slip rate 
uncertainty (c?s) is also small, then the reduction in slip rate 
is negligible. If both parameters are large, the fault may 
nearly be prevented from slipping. 

A quantitative measure of this effect can be derived from 
the analytic solution of a simpler problem. Assume that an 
inverse model makes only one scalar prediction (p) which is 
to be compared with all data. These data include N r entries 
showing a positive rate of r with uncertainty o- r and N O en- 
tries showing a rate of zero with uncertainty cy 0 . If we define 
a dimensionless parameter 

r = Nrø'• 
N0crr2 (27) 

then the result of a maximum-likelihood solution is 

p F 
- = (28) 
r F+I 

This case is more complicated because the model predicts 
a range of slip rates along the fault trace and a range of con- 
tinuum strain rates in its neighborhood. However, the scaling 
is N r --• •Wez (the number of finite elements crossed by the 
fault); N O -• WI 2 (where I is the length of the fault trace); 
crr -• 6s; and cr 0 •/tI. Together these suggest a new di- 
mensionless parameter 

L 

At 2 ZWgz 
[•f = 2', •=l (29) 

(gs)2 

in which x is a dimensionless coefficient which depends on 
the type of faulting. Numerical tests with one isolated fault in 
the middle of a plate show that these equations give good 
predictions of mean slip rate (within 5%) if the following co- 
efficients are used: strike slip r s • 1.0; thrust r t _= 0.2; nor- 
mal r n • 5; and detachment rcl = 1.0. 

7. In order to test the iteration of the tectonic history with 
(26), I divided the domain into two plates with one great cir- 
cle strike-slip fault. Then, I artificially segmented the fault, 
assigning the same offset to each segment but assigning dif- 
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ferent (overlapping) time windows for slip on each segment. 
With iteration, the algorithm slowly converged on the correct 
solution, in which the slip history is the same for all seg- 
ments, with all slip taking place within the shortest of the 
time windows. If the assigned uncertainties in fault slip rate 
are small and/or the continuum stiffness ( W/At2 ) is low, then 
convergence is slow, because actual slip rates are only 
slightly different from goal rates, and hence the goals are only 
adjusted in small steps. Scaling suggests that the number of 
iterations required for convergence should be proportional to 
(If + 1 ), and numerical trials confirm this. Thus there is a 
trade-off between fitting the data closely and converging 
quickly on the best deformation history. A good computa- 
tional strategy is to set the parameters for small values of F 
(•1-3) in the early iterations, then to raise F in later itera- 
tions; such a method is similar to simulated annealing. 

8. Balanced cross section data yield the correct relative 
displacement of their endpoints when there is no conflict with 
other data. For example, when two cross sections each span a 
long thrust fault with very uncertain offset (e.g., • - 1000 
km), they determine its slip distribution and also determine 
the relative rotation of the rigid plates on each side. 

9. If a single cross section with nonzero extension is lo- 
cated in a plate interior away from any faults or other data, 
there is a conflict between the cross-section datum and the a 

priori assumption of no intraplate deformation. I have found a 
dimensionless parameter for cross sections, 

At2 
(30) Fc --rc 2 

O-c 14/ 

in which cr c is the uncertainty of the extension rate of the 
cross-section. Used with equation (28), this parameter gives a 
good prediction of model rates of cross-section extension 
when the nondimensional factor r c = 0.8. 

10. When several cross sections showing equal shortening 
(or extension) are placed en echelon in a band (like stitches), 
they overcome the a priori constraint of plate rigidity and de- 
fine a band of orogeny (or taphrogeny). In order for the far- 
field velocity difference to be similar to the shortening (ex- 
tension) velocity along each cross section, the spacing be- 
tween cross sections must be comparable to their individual 
lengths or less. 

11. When a microplate is completely free to move (e.g., 
isolated from the boundary conditions by a small-circle 
strike-slip fault of unknown offset) and it contains a paleo- 
latitude anomaly datum, the microplate moves toward or 
away from the paleopole in accordance with the datum. 

12. When a paleomagnetic site with a paleolatitude anom- 
aly occurs in a plate interior isolated from active faults or 
other data, there is a conflict with the a priori assumption of 
no deformation, and the solution is a compromise. There is a 
dimensionless factor for paleolatitude anomalies 

At2p 
Fp -= rp cr•W (31) 

(where O-p is the uncertainty in the mean N-S velocity in m 
s 'l, and rp • 1 ) which can be used with (28) to predict the re- 
sult. For example, with typical values P = 100, W = lx 10 -1ø 

m '2, and O-p = 6 x 10 -1ø m s '1 (5 ø per 30 m.y.), the N-S mo- 
tion of the site will only exceed half its nominal value for 
At > 5x10 -16 s'l; this is a large value that might be assigned 
in British Columbia but would not be appropriate in Wyo- 
mingø 

13o When a plate containing a single paleomagnetic site 
indicating a vertical-axis rotation is constrained at only one 
node, it rotates at the correct rate without negligible internal 
deformation. 

14. When an paleomagnetic site showing vertical-axis ro- 
tation occurs in a plate interior isolated from active faults or 
other data, there is a conflict with the a priori assumption of 
no deformation, and the solution is a compromise. There is a 
dimensionless factor for rotation data 

u2p 
F r -- r r • (32) 

2W a o' r 

(where o- r is the uncertainty in the rotation rate in radians per 
second, a is the area of a typical finite element, and r r • 0.2 ) 
which can be used with (28) to predict the result. 

15. If uniform stress-direction data are given for each ele- 
ment in a problem where other data do not completely dictate 
the stress direction, then the velocity solution changes to 
honor the stress constraints. One problem tested had a rectan- 
gular plate fixed on its eastern side and forced to deform by 
several paleomagnetic sites with equal latitude anomalies 
along its western edge. If the stress direction was not con- 
strained, the solution was a combination of dextral simple 
shear and clockwise rotation. If N-S O-lh was specified, the 
solution changed to a combination of dextral simple shear and 
E-W extension, with little rotation. Three refinements of the 
velocity solution were enough for convergence. 

n • 

r k = (t 2 -tl) k 

All. Assignment of Uncertainties to Rate Estimates 

Most structural and paleomagnetic data indicate that some 
strain or displacement (symbolized here by the generic c ) 
occurred after time t 2 and before time q. They do not imply 
that the rate was constant during that period. The computation 
begins by using the average rate as the rate estimate in each 
time step (except less at each end): 

At', 
inf• nat-(tl)k, 

[('2)/•-(n-OAt 
ß (33) 

At 

However, it would be inadequate to estimate the rate un- 
certainties cr• by dividing the standard deviation of the de- 
formation (•c•) by the time interval (t 2 -tl) • . That would 
confuse the uncertainty in the rate during one time step with 
the uncertainty in the average rate. Also, it would have the 
perverse effect of making data less important as their geologic 
age constraints became tighter. 

A related practical problem concerns the convergence of 
the iteration process by which we attempt to revise the rate 
histories (26). Fault offsets are often known with very small 
uncertainties. If the offset uncertainty is the only contribution 
to cry, then the rate uncertainty is so small that the model 
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prediction of the rate is virtually identical to the rate goal. 
Therefore the adjustment of the rate history is unacceptably 
slowo 

My solution is to begin the iteration process with a stan- 
dard rate uncertainty cr * assigned to each datum in a homo- 
geneous class. This value is chosen so as to give F values of 
order unity for all data. This permits the data to interact and 
permits adjustment of some rate histories in a reasonable 
number of iterations. Then, as the iteration continues, the rate 
uncertainties are gradually changed to values based only on 
the uncertainties in the numerators according to 

(i-1) 

• =or* . (34) 

(for all n and for all k in the class) where i is the iteration 
number up to a maximum of M. One way to think of this is 
that (most) rate uncertainties are initially increased arbitrarily 
to allow for the uncertainty in the time-history, or denomina- 
tor. Once the time-history has been adjusted, they are 
smoothly returned to values based only on their numerators. 
Another way to say this is that the algorithm begins with a 
least squares solution, passes through a phase of weighted 
least squares solutions, and finishes with a maximum-likeli- 
hood solution. 

Appendix B' Program and Data Files Available 

The following computer files include everything needed to 
reproduce the computation and also to track the geologic data 
to its sources in the literature. These files will be available in- 

definitely for anonymous FTP access at the Internet address 
(URL) of ftp://element.ess.ucla.edu/restore. 

Restore.f90 Fortran 90 source code for program 
Restore, version 2.0; 

Parameters.dat short file of input parameters (read by 
Restore); 

fRMF.xls 

fRMF.dat 

fRMF.dig 

cRMF.dat 

pRMF.dat 

sRMF.dat 

RMF7.feg 
RMF7.bcs 

RMF refs.txt 

table of information about fault offsets, 
including references to literature, with 
my editorial summation (Microsoft 
Excel file); 
table of fault offsets, with my editorial 
summation of timing and uncertainties 
but without references to literature 

(read by Restore); 
digitized traces of faults (read by Re- 
store); 
table of restored lengths of balanced 
cross sections, with references (read by 
Restore); 
table of paleomagnetic sites with in- 
ferred paleolatitude anomalies and 
vertical-axis rotations and original 
references (read by Restore); 
table of paleostress direction indicators 
with original references (read by Re- 
store);. 
finite element grid (read by Restore); 
boundary conditions for finite element 
grid (read by Restore); 
bibliographic citations for all refer- 
ences in the data tables, except for 
entries in pRMF.dat that begin 
"IAGA"; for these, the source were 
listed by McElhinny and Lock [1995]. 
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