Correlation of Late-Pleistocene Lake-Level Oscillations in Mono Lake, California, with North Atlantic Climate Events

Larry V. Benson

U.S. Geological Survey, 3215 Marine Street, Boulder, Colorado 80303-1066

Steve P. Lund

Department of Earth Sciences, University of Southern California, Los Angeles, California 90089

James W. Burdett

Cornell Laboratory for Stable Isotope Analysis, 125 Boyce Thompson Institute, Tower Road, Cornell University, Ithaca, New York 14583

Michaele Kashgarian and Timothy P. Rose

Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94550

Joseph P. Smoot

U.S. Geological Survey, MS 955, Reston, Virginia 22092

and

Martha Schwartz

Department of Earth Sciences, University of Southern California, Los Angeles, California 90089

Received April 17, 1997

Oxygen-18 (18O) values of sediment from the Wilson Creek Formation, Mono Basin, California, indicate three scales of temporal variation (Dansgaard-Oeschger, Heinrich, and Milankovitch) in the hydrologic balance of Mono Lake between 35,400 and 12,900 14C yr B.P. During this interval, Mono Lake experienced four lowstands each lasting from 1000 to 2000 yr. The youngest lowstand, which occurred between 15,500 and 14,000 14C yr B.P., was nearly synchronous with a desiccation of Owens Lake, California. Paleomagnetic secular variation (PSV) data indicate that three of four persistent lowstands occurred at the same times as Heinrich events H1, H2, and H4. 18O data indicate the two highest lake levels occurred ~18,000 and ~13,100 14C yr B.P., corresponding to passages of the mean position of the polar jet stream over the Mono Basin. Extremely low values of total inorganic carbon between 26,000 and 14,000 14C yr B.P. indicate glacial activity, corresponding to a time when summer insolation was much reduced. © 1998 University of Washington.

INTRODUCTION

During the last glacial age, ice-core and marine records indicate that the climate of the North Atlantic region was characterized by alternating cool–warm intervals (Dansgaard–Oeschger cycles) that lasted between 500 and 2000 yr (Bond et al., 1993; Bond and Lotti, 1995). The strongest of the cool intervals were often terminated by the massive discharge of icebergs (Heinrich events) from ice sheets surrounding the North Atlantic (Bond et al., 1992; Broecker, 1994). Abrupt warming followed the Heinrich events. In recent papers (Benson et al., 1996a, 1997a) it was shown that Owens Basin, California, was relatively dry during the occurrence of the North Atlantic region Younger Dryas (Heinrich event H0), Older Dryas, Oldest Dryas, and Heinrich H1 and H2 events.

Chemical records from sediment cores taken in Owens Lake, California, indicate that major advances of Sierran glaciers occurred between 52,500 and 12,500 14C yr B.P. (Fig. 1). The glacial advances appear to have been accompanied by decreases in the amount of water entering Owens Lake (Benson et al., 1996a). These data indicate that the Owens Basin was cold and dry when the North Atlantic region was cold.1 Unfortunately, 14C age controls for the

1 During glacial advances, the total organic carbon content of Owens Lake decreased, indicating that productivity decreased in response to decreases in air and water temperatures and to decreases in light penetration that accompanied the input of turbid melt water. During some advances, δ18O
Mono Lake is located in a structural depression at the western edge of the Great Basin, directly north of the Owens Lake Basin (Fig. 1). This closed-basin lake lies in the rain shadow of the Sierra Nevada which receives most of its precipitation in the cool season when the mean position of the polar jet stream lies between 37 and 39°N (Starrett, 1949; Pyke, 1972).

The last lake-level maximum (highstand) of Mono Lake occurred ~13,000 ¹⁴C yr B.P. (Fig. 2). Variations in lake size prior to 15,000 ¹⁴C yr B.P. have proven difficult to document using surficial materials, although (Lajoie et al., 1982) have argued that brief highstands of Mono Lake also occurred at ~34,000 and ~26,000 ¹⁴C yr B.P. (Benson et al., 1990, Fig. 14).

To obtain a high-resolution record of lake-level change in the Mono Basin, we sampled the late Pleistocene Wilson Creek Formation which crops out along the periphery of Mono Lake. The Wilson Creek Formation, which consists of 6 to 15 m of finely laminated muds and silts, contains 19 tephra layers (ashes) that provide stratigraphic control throughout the basin (Plates 2 and 3, Lajoie, 1968). The sediments and volcanic tephra layers of the Wilson Creek Formation are described in Lajoie (1968). With the exception of Ash 2, a 3- to 6-m-thick basaltic tephra layer derived from Black Point, the other tephra layers are rhyolitic. In its type section (Fig. 1), the Wilson Creek Formation contains ~7 m of lacustrine sediments that overlie fluvial gravel, containing small lenses of sand. With the exception of a few sand units located between Ashes 4 and 5, the sediments of the Wilson Creek Formation have the same style, consisting of laminated and structureless muddy silts. Little or no expandable clays have been found in Wilson Creek sediments and the carbonate fraction consists solely of calcite. Ostracodes usually compose ~15% of the carbonate fraction (L. Benson and M. Weimer, unpublished data).

In the type section, the Ash 4 to 5 interval is characterized by contorted and deformed bedding (Fig. 3; Lajoie, 1968, Fig. 14A, Plates 2 and 3). A series of imbricate thrusts that repeat parts of the section in this interval are believed to have formed in response to loading by Ash 2. Ash 2 is itself irregularly bedded and contorted in the Wilson and Mill Creek areas (Lajoie, 1968, Photo no. 22). At its South Shore site (Lajoie, 1968, Plate 13; Fig. 1), the Wilson Creek Formation is thicker than the type section and 17 m lower in elevation. At this site, the sediments between Ash 4 and 5 are neither contorted nor deformed. Comparison of paleomagnetic-field directions (inclination and declination) obtained from the Wilson Creek Formation at its type and

Although the lake that occupied the Mono Basin in the late Pleistocene has often been referred to as Lake Russell in honor of I. C. Russell (Russell, 1889), in this paper, we will refer to the lake that has intermittently occupied the Mono Basin during the Quaternary by its modern name—Mono Lake.
LATE PLEISTOCENE MONO LAKE

AGE CONTROL

Radiocarbon ages of carbonate samples from the Wilson Creek Formation, as well as the distances of the samples above and below tephra layers (Benson et al., 1990, Table IV), were used to construct an age model for the Wilson Creek type section. Linear regression of data between Ashes 1 and 4 and between Ashes 5 and 19 (Fig. 4a) was used to estimate the ^{14}C ages of individual tephra layers (Table 1). Age estimates for the tephra layers (Table 1), together with two new AMS ^{14}C determinations on unaltered ostracode valves, were then used to set the chronology for samples obtained in this study from our main isotope sampling site (Fig. 4b). Given the fit of our linear age–depth models, we consider its accuracy to be no better than a thousand years.

Our main 6.94-m-thick isotope sampling site was located near exposures originally used to construct the 7.17-m type section and contains a sequence of sediments deposited between 35,400 and 12,900 yr B.P. A linear fit using the ages of and depth interval between Ashes 4 and 5 at the type section (J. C. Liddicoat and S. P. Lund, unpublished data) 18 O data from the Wilson Creek Formation (Fig. 5) indicate the existence of three scales of temporal variation in the hydrologic balance.

The $d^{18}O$ data from the GISP2 core (Grootes et al., 1993; Grootes et al., 1994) depicted in Figure 5 was converted from its “absolute” chronology (Meese et al., 1994) to a ^{14}C chronology using the data of (Bard et al., 1993). The ^{14}C chronology was then “stretched” to place the Heinrich events that matched to Dansgaard–Oeschger cycles at 14,000, 21,000, 27,000, and 35,500 yr B.P.

The multimillennial (Heinrich) scale in hydrologic variance is evidenced by persistent lowstands (L1 through L4) of Mono Lake (high values of $d^{18}O$) that occurred every...
FIG. 3. Partial stratigraphic section of sediments exposed along Wilson Creek at the type locality of the Wilson Creek Formation. Ash unit numbers from Lajoie (1968). Tick marks define 10-cm intervals. The clay unit with imbricate thrusts is probably a glide plane for a slump caused by deposition of Ash 2.
FIG. 4. (a) Radiocarbon ages and depths of carbonates in the Wilson Creek area used to estimate the ages of 19 tephra layers (ashes) exposed in the Wilson Creek Formation along Wilson Creek. Ashes are depicted as vertical dashed lines. Data used in this figure were taken from Wilson Creek type section listing in Table IV in Benson et al. (1990). In the regression equations, \(D\) refers to depth in meters (m). In constructing the two regression lines, some samples from Table IV were rejected. Sample USGS-1435 came from the reworked Ash 4 ± 5 interval. Radiocarbon ages of samples USGS-1436 and L-1167C were splits from the same collection of ostracode valves whose radiocarbon ages are anomalously young (23,000 instead of 26,000 \(^14\)C yr). We expect that modern carbon was added to many of the thin-walled ostracode valves. The radiocarbon age of sample USGS-362, a nodular tufa with carbonate coatings from the base of the Wilson Creek Formation, was also clearly too young (28,600 instead of 36,000 \(^14\)C yr). Sample USGS-276 was rejected because its \(^14\)C age was infinite (39,600 \(^14\)C yr). (b) Radiocarbon age control for Wilson Creek isotope section. Age control is based on estimated ages of 18 tephra layers (Table 1). The two ostracode AMS \(^14\)C ages provide a check on the reliability of the tephra-derived age model for the interval 25,000 to 27,500 \(^14\)C yr B.P.

6000 to 7000 years. Given the \(^14\)C-based chronologies for the marine and lacustrine data sets, it appears that the youngest prominent lowstands of Mono Lake occurred during Heinrich events H1 through H3 (Fig. 5).

Radiocarbon reservoir effects, however, are neither constant nor easily quantified in marine and lacustrine environments; e.g., modern tufas in Mono Lake have \(^13\)C ages ranging from 1100 to 2100 \(^14\)C years (Benson et al., 1990). Because much of the reservoir effect in Mono Lake may have resulted from inputs of \(^13\)C-free carbon accompanying subsurface volcanism, the pre-Holocene value of the reservoir effect may have at times been of the same magnitude as the modern effect, given the history of volcanism evidenced by the 19 tephra layers contained within Wilson Creek sediments.

Porous lacustrine carbonates typical of the Mono Basin, however, do not remain closed systems with respect to carbon. Such carbonates tend to acquire \(^14\)C when exposed to the subaerial environment by a dissolution–precipitation process that occurs when low-pH rain comes in contact with the carbonate. This process can decrease the apparent \(^14\)C age of porous carbonates by more than 1000 years (Thompson et al., 1986). Because carbonates can acquire modern carbon during their entire tenure in the subaerial environment, the apparent \(^14\)C ages of the oldest Mono Lake tufas may be much younger than the events they appear to date. For these reasons, we turned to another method of comparison to test the hypothesis that Mono Lake lowstands accompanied periods of intense ice rafting in the North Atlantic Ocean.

Recently Lund (1996) has shown that distinctive magnetic-field features in Holocene records of paleomagnetic secular variation (PSV) can be traced across North America for more than 4000 km without change in pattern. In this paper, we have applied this concept, which assumes nearly synchronous (within ±100 to 200 years) field variability, to PSV records from Mono Lake and the North Atlantic Ocean. The likelihood that lowstands of Mono Lake were synchronous with Heinrich events was tested using data from two deep-sea sediment cores from the western North Atlantic (P-094 located at 50.2\(^\circ\)N, 45.7\(^\circ\)W and CH88-10P located at 29.6\(^\circ\)N, 73.3\(^\circ\)W; Haskell et al., 1991; Stoner et al., 1995; Stoner et al., 1996). Four detrital carbonate intervals (DC1 through DC4) identified in P-094 are considered equivalent to Heinrich events H1 through H4 (Stoner et al., 1995; Stoner et al., 1996). The carbonate and oxygen-isotope stra-
TABLE 1

Radiocarbon Ages for the Wilson Creek Formation

<table>
<thead>
<tr>
<th>Ostracode sample</th>
<th>CAMS no. a</th>
<th>Depth in isotope section (m)</th>
<th>Radiocarbon age (uncalibrated) 14C yr B.P. ± 1 std. dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAMS, Samples analyzed by Center for Accelerator Mass Spectrometry (CAMS) facility at Lawrence Livermore National Laboratory.</td>
<td>20031</td>
<td>4.37</td>
<td>25,570 ± 260</td>
</tr>
<tr>
<td>CAMS, Samples analyzed by Center for Accelerator Mass Spectrometry (CAMS) facility at Lawrence Livermore National Laboratory.</td>
<td>20032</td>
<td>4.63</td>
<td>27,520 ± 270</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tephra layer</th>
<th>Depth in isotope section (m)</th>
<th>Estimated age 14C yr B.P. b</th>
<th>Depth in type section (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ash #1</td>
<td>0.00</td>
<td>12,920</td>
<td>0.24</td>
</tr>
<tr>
<td>Ash #2</td>
<td>0.20</td>
<td>13,610</td>
<td>0.54</td>
</tr>
<tr>
<td>Ash #3</td>
<td>0.24</td>
<td>13,790</td>
<td>0.62</td>
</tr>
<tr>
<td>Ash #4</td>
<td>0.34</td>
<td>14,140</td>
<td>0.77</td>
</tr>
<tr>
<td>Ash #5</td>
<td>2.88</td>
<td>21,680</td>
<td>2.72</td>
</tr>
<tr>
<td>Ash #6</td>
<td>2.96</td>
<td>21,870</td>
<td>2.78</td>
</tr>
<tr>
<td>Ash #7</td>
<td>3.02</td>
<td>22,070</td>
<td>2.84</td>
</tr>
<tr>
<td>Ash #8</td>
<td>4.14</td>
<td>25,540</td>
<td>3.92</td>
</tr>
<tr>
<td>Ash #9</td>
<td>4.34</td>
<td>26,090</td>
<td>4.09</td>
</tr>
<tr>
<td>Ash #10</td>
<td>4.40</td>
<td>26,310</td>
<td>4.16</td>
</tr>
<tr>
<td>Ash #11</td>
<td>4.42</td>
<td>26,340</td>
<td>4.17</td>
</tr>
<tr>
<td>Ash #12</td>
<td>4.44</td>
<td>26,410</td>
<td>4.19</td>
</tr>
<tr>
<td>Ash #13</td>
<td>4.46</td>
<td>26,470</td>
<td>4.21</td>
</tr>
<tr>
<td>Ash #14</td>
<td>4.48</td>
<td>26,600</td>
<td>4.25</td>
</tr>
<tr>
<td>Ash #15</td>
<td>4.92</td>
<td>28,080</td>
<td>4.71</td>
</tr>
<tr>
<td>Ash #16</td>
<td>6.42</td>
<td>33,160</td>
<td>6.29</td>
</tr>
<tr>
<td>Ash #17</td>
<td>6.57</td>
<td>33,900</td>
<td>6.52</td>
</tr>
<tr>
<td>Ash #18</td>
<td>—</td>
<td>35,530</td>
<td>7.03</td>
</tr>
<tr>
<td>Ash #19</td>
<td>6.94</td>
<td>35,600</td>
<td>7.05</td>
</tr>
</tbody>
</table>

a Cams, Samples analyzed by Center for Accelerator Mass Spectrometry (CAMS) facility at Lawrence Livermore National Laboratory.
b Radiocarbon ages estimated by interpolation using the age model of Figure 4a. Ages of Ashes #1–#14 are probably accurate within 500 yr. After 27,000 14C yr B.P., paleomagnetic secular variation data for the Wilson Creek type section and deep-sea core records (see text for discussion) indicate that Wilson Creek tufa based 14C age estimates of Ashes #15–#19 are too young. The marine-based 14C age model indicates the following 14C ages for Ashes #15–#19: 31,500, 37,000, 38,000, 40,000, and 40,000 14C yr B.P.

tigraphies of CH88-10P were then used to estimate the locations of Heinrich events H1 through H4 in this core, using previously developed correlations between these stratigraphies and Heinrich events (Bond et al., 1993; Keigwin and Jones, 1994; Bond and Lotti, 1995). Paleomagnetic field directional and intensity variations recorded in CH88-10P sediments (Lund, 1993; Schwartz et al., 1996a) and P-094 (Stoner et al., 1995; Stoner et al., 1996) were used to create a magnetic chronostatigraphy in which each Heinrich event was associated with directional features of the magnetic records. We then correlated intensity records for P-094 and CH88-10P (Lund et al., 1988; Schwartz et al., 1996b) and directional records (both inclination and declination) for CH88-10P with Wilson Creek PSV features to determine what Mono Lake δ18O features were associated with Heinrich events (Fig. 6).

From the PSV data, it is apparent that Heinrich events H1, H2, and H4 and Mono Lake lowstands L1, L2, and L4 are nearly synchronous; however, H3 does not correlate with any Mono Lake lowstand. Lowstand L1 is of particular interest because it occurred at very nearly the same time (15,500 to 14,000 14C yr B.P.) as a drying of Owens Lake (15,500 to ~13,300 14C yr B.P.). A sediment core taken from Pyramid Lake in the Lahontan Basin also indicates a maximum in δ18O values at 14,500 14C yr B.P. (L. V. Benson, unpublished data). Negrini (1997) has associated the Wono tephra layer dated 27,300 ± 300 14C yr B.P. (Benson et al., 1997b) with paleomagnetic inclination features of Lake Chewaucan sediments that can be correlated with inclination features in the Wilson Creek Formation (Fig. 6). The correlation indicates that our Wilson Creek age model is correct back to 27,000 14C yr B.P. If our PSV approach is correct, it implies that lake and marine 14C time scales began to diverge at ~27,000 14C yr B.P. and that by 35,000 14C yr B.P. (Mono Lake time scale) 14C ages of Mono Lake carbonates are ~3000 yr too young relative to the marine time scale. This suggests that either the marine reservoir effect has been underestimated or, more likely, that the addition of 0.3% modern carbon has shifted the ages of the oldest Mono Lake tufas. This also implies that the ages of Wilson Creek Ashes 15–19 (Table 1) have been underestimated with our age model. The fact that H3 is not associated with any persistent lowstand of Mono Lake is of particular interest because H3 is considered to mostly have originated from sources other
FIG. 5. $\delta^{18}O$ and TIC records from Wilson Creek sediments compared with the lithic and Neogloboquadrina pachyderma (left-coiling) records from North Atlantic core V23-81, the SPECMAP stacked marine $\delta^{18}O$ record (Imbrie et al., 1984), and the $\delta^{18}O$ record from GISP2 ice core, Greenland (Grootes et al., 1993; Stuiver et al., 1995). H1 to H4 refer to North Atlantic Heinrich (Heinrich, 1988) events; L1 to L4 refer to principal lowstands of Mono Lake, D2 to D8 refers to Dansgaard–Oeschger interstadials. Placement of Heinrich events on the GISP2 record follows Bond and Lotti (1995).

than the Laurentide ice sheet (Grousset et al., 1993; Gwiazda et al., 1996). This implies that only massive ice rafting events, originating in the Laurentide ice sheet, were capable of perturbing the climate of the Mono Lake area, possibly through the effect of the ice sheet on the trajectory of the polar jet stream. This also lends support to the hypothesis of MacAyeal (1993) that surging of the Hudson Bay lobe of the Laurentide ice sheet caused Heinrich events.

Clark and Bartlein (1995) have recently suggested that late Pleistocene alpine glaciers in the western United States advanced to their terminal areas up to several thousand years before a Heinrich event and retreated shortly thereafter. The data presented in Clark and Bartlein (1995), though of low resolution, are consistent with the data presented herein which indicate that H1, H2, and H4 occurred during cold and relatively dry periods.

The 10^4-yr (Milankovitch) scale of climate variability is evidenced by parallelism between the overall trend in the Wilson Creek and marine $\delta^{18}O$ records from 35,500 to 18,000 14C yr B.P. (Fig. 5). This parallelism is interpreted to indicate the gradual southward movement of the mean position of the polar jet stream in response to increasing size of the Laurentide ice sheet (Antevs, 1948; Benson and Thompson, 1987; Kutzbach and Guetter, 1986). The lack of parallelism between 18,000 and 13,000 14C yr B.P. is interpreted to indicate that the polar jet stream was forced south of the Mono Basin (38$^\circ$N) as the ice sheet expanded. The two lake-level maxima ($\delta^{18}O$ minima), centered at 18,000 and 13,100 14C yr B.P., therefore, correspond to two passages of the polar jet stream core over the Mono Basin.

The 13,100 14C yr B.P. sediment-based highstand occurs at essentially the same time as the tufa-based highstand, previously dated at 13,000 14C yr B.P. (Fig. 2). The highstand at 18,000 14C yr B.P. was not recorded in the tufa-based lake-level record (Fig. 2). This probably reflects the erodible nature of the substrate (silt and sands) on which carbonates were deposited; i.e., the transgression to the 13,100 14C yr B.P. highstand effectively removed most of the older surficial carbonates deposited during previous highstands.

The stacked marine $\delta^{18}O$ record (PDB standard) is assumed to be a proxy for the size of the Laurentide Ice Sheet during the last glacial (Imbrie et al., 1984).
Glaciation of the Mono Basin

In the Owens Basin, the Tioga glaciation occurred between ~25,000 and ~15,000 14C yr B.P. as indicated by increased magnetic susceptibility and decreased TIC and total organic carbon (TOC) concentrations in cored sediments (Benson et al., 1996a).

In a closed basin lake, such as Mono Lake, changes in TIC are expected to parallel changes in δ^{18}O unless the influx of detrital silicates masks the TIC signal (Benson et al., 1996a). Though the amplitude of the variations differ in the two data sets, such a parallelism does occur in the Mono Lake record between 35,400 and 26,000 14C yr B.P. (Fig. 5). Between 26,000 and 14,000 14C yr B.P., however, TIC values are markedly reduced and the TIC and δ^{18}O records are unrelated. We attribute the reduction and loss of variability in TIC between 26,000 and 14,000 14C yr B.P. to the influx of detrital rock flour that accompanied Tioga glaciation of the Mono Basin (Fig. 5). The Tioga glaciation may have, in part, been the result of reduced summer insolation; control. Methodology for placement of the Heinrich events on the paleomagnetic waveforms is discussed in the text. The stratigraphic locations of Heinrich events in North Atlantic cores CH88-10P, and P494 are indicated by gray boxes labeled H_1 through H_4. Mono Lake lowstands are shown as gray boxes labeled “low lake.” The paleomagnetic data indicate that Heinrich events H_1, H_2, and H_4 occurred during Mono low-lake intervals, whereas, Heinrich event H_3 did not. Note that the intensity record of Mono Lake is sufficient to show the correlation between L_4 and H_4 but the inclination record is equivocal. The 14C chronology for CH88-10P (Keigwin and Jones, 1989; Keigwin and Jones, 1994) was used to develop a common time scale for the marine records (Fig. 6). Radiocarbon ages of Mono Lake sediments are shown in the upper abscissa and radiocarbon ages of marine sediments are shown in the lower abscissa. The location of the inclination feature associated with the 27,300 14C yr old Wono tephra layer is indicated by a solid vertical line.

FIG. 6. Comparison of Heinrich event and Mono Lake lowstand ages using paleomagnetic field variability (intensity and inclination) for chronostratigraphic control. Methodology for placement of the Heinrich events on the paleomagnetic waveforms is discussed in the text. The stratigraphic locations of Heinrich events in North Atlantic cores CH88-10P, and P494 are indicated by gray boxes labeled H_1 through H_4. Mono Lake lowstands are shown as gray boxes labeled “low lake.” The paleomagnetic data indicate that Heinrich events H_1, H_2, and H_4 occurred during Mono low-lake intervals, whereas, Heinrich event H_3 did not. Note that the intensity record of Mono Lake is sufficient to show the correlation between L_4 and H_4 but the inclination record is equivocal. The 14C chronology for CH88-10P (Keigwin and Jones, 1989; Keigwin and Jones, 1994) was used to develop a common time scale for the marine records (Fig. 6). Radiocarbon ages of Mono Lake sediments are shown in the upper abscissa and radiocarbon ages of marine sediments are shown in the lower abscissa. The location of the inclination feature associated with the 27,300 14C yr old Wono tephra layer is indicated by a solid vertical line.

FIG. 7. Values of January and July insolation at 40°N for the period 36,000 to 12,000 14C yr B.P. The period of intense glaciation recorded by the TIC fraction of Mono Lake sediments occurred during a time characterized by cold summers and warm winters.

CONCLUSIONS

Most of the major dry (and probably cool)5 periods in the Mono Basin between 35,900 and 12,900 14C yr B.P. appear

5 The 2 to 3 $\%$ increase in δ^{18}O that occurred during the transition to Mono Lake lowstands can also partly be attributed to decreases in water temperature; i.e., fractionation of 18O into calcium carbonate increases by ~ 0.25 $\%$ per °C reduction in water temperature (O’Neil et al., 1969).
to have occurred at nearly the same time as cool periods in the North Atlantic. Cold–warm oscillations in the North Atlantic region have previously been attributed to abrupt changes in the rate and location of thermohaline overturn (Broecker et al., 1990; Broecker and Denton, 1989; Lehman and Keigwin, 1992; Rind et al., 1986). To the extent that the dry–wet transitions in the Mono Basin are synchronous with cold–warm transitions in the North Atlantic region, our data support the hypothesis that cooling of the North Atlantic caused a downstream cooling of the atmosphere and the North Pacific. This in turn led to a decrease in the amount of moisture reaching the western United States of America.

Age controls for both lacustrine and marine records, however, remain inadequate to demonstrate the absolute synchronicity of climate change across the Northern Hemisphere and it is possible that there are substantial offsets in the timing of climate transitions in both regions. In any case, we envision the polar jet stream as a principal component of the atmospheric teleconnection that linked climate change across the upper part of the Northern Hemisphere (Clark and Bartlein, 1995). Similar high-resolution data from lower latitudes (e.g., 20°N) would help answer the question whether climate change was synchronous and unidirectional across the entire Northern Hemisphere.

ACKNOWLEDGMENTS

Radiocarbon analyses were performed in part under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract W-7405-ENG-48. The stable isotope and inorganic carbon analyses were funded by the Global Change Program of the U.S. Geological Survey. Paleomagnetic research was funded by a University of Southern California Faculty Research Innovation Fund grant. We thank Emi Ito and Jack Oviatt for their helpful reviews of earlier versions of this manuscript and Ken Lajoie for his assistance during sampling of the Wilson Creek Formation.

REFERENCES

