EPSC240: GEOLOGY IN THE FIELD

INTRODUCTION TO PLATE TECTONICS

TODAY

- Sketches
- Compasses: 713, 729, 736, and 6677
- Hand in stereonets lab
- Geology of Québec topics

WEDNESDAY

- · Seismics lab. Not raining!
- Meet in FDA 348 at 2 pm

EARTH'S INTERNAL STRUCTURE

- Crust
- Mantle
- Lithosphere
- Asthenosphere
- Outer core
- Inner core

Wikipedia

HOW DO WE KNOW?

 Seismology! Seismic wave speed depends on P, T, mineralogy, chemical composition, orientation, degree of partial melting
 behave according to SNELL'S LAW

PLATE MOTIONS

Map of major tectonic plates (there are 52 in total)

HOW DO WE KNOW?

 GPS measurements are made continuously - different parts of the world travel in different directions. 0-100 mm/year.

PLATE MOTIONS - GEOLOGIC TIME

- When rocks form, minerals with iron "trap" the orientation of the magnetic field at that time.
- · Basalts contain lots of iron!

Images: Wikipedia

VINE-MATTHEWS HYPOTHESIS

• 1963: Seafloor spreading

Wikinedia

NEW SEAFLOOR

- Direct observation: submersibles
- On land: ophiolite contain similar rock assemblages

SUBDUCTION

 If new plate area is created at spreading centre, some plate must be destroyed somewhere (the radius of the Earth is not increasing)

WHY DO PLATES SUBDUCT?

- Oceanic lithosphere cools and densifies away from spreading centre - buoyantly unstable
- Instabilities derived from core-mantle boundary drive convection from below

PLATE TECTONICS

TECTONIC SETTINGS: RIFTS

Plates move away from each other and are pulled apart

TECTONIC SETTINGS: TRANSFORM

 Strike slip relative motion as plates slide past each other laterally

TECTONIC SETTINGS: CONVERGENT MARGINS (SUBDUCTION ZONES)

 Oceanic plate is subducted into the mantle beneath a continental plate or oceanic plate

TECTONIC SETTINGS: OROGENY

WILSON CYCLE

PLATE TECTONICS: TOPOGRAPHY

PLATE TECTONICS: EARTHQUAKES

PLATE TECTONICS: VOLCANOES

PLATE TECTONICS: EVOLUTION OF LIFE

· When and where can migrations occur?

PLATE TECTONICS: CLIMATE CHANGE

Ocean circulation, weathering (CO₂), burial of CaCO₃

SUMMARY

- Plate tectonics is a fundamental paradigm in the earth sciences
- Tectonic motions today and in the past shape the modern world
- Characteristic settings can be identified and used to demonstrate how plate tectonics works