pH of natural waters

Figure 5.4 Schematic plot showing the frequency of occurrence of pH values and the major controls on natural-water pH 's.

Abstract

In natural solutions having pH values between 4.5 and 7 , the acids are weak and usually include carbonic acid and smaller amounts of organic acids. These are generally water-dominated systems. Solutions with either very low or very high pH 's are generally rock-dominated systems.

Kawah-Jjen. Indonesia

Porewater rising through serpentinite mud volcanoes on the Mariana forearc
$(\mathrm{Mg}, \mathrm{Fe})_{2} \mathrm{SiO}_{4}+4 \mathrm{H}_{2} \mathrm{O} \leftarrow \rightarrow$ $2 \mathrm{Mg}^{2+}+2 \mathrm{Fe}^{2+}+\mathrm{Si}(\mathrm{OH})_{4}+4 \mathrm{OH}^{-}$

pH measurements and pH scales

$$
\mathrm{H}^{+}=\mathrm{H}_{3} \mathrm{O}^{+}=\mathrm{H}_{9} \mathrm{O}_{4}^{+}
$$

Soren Sorensen (1909) proposed an electrochemical procedure for the determination of the hydrogen ion concentration which he dubbed the "hydrogen ion exponent":

$$
\mathrm{p}_{\mathrm{S}} \mathrm{H}=-\log \left[\mathrm{H}^{+}\right]
$$

where $\left[\mathrm{H}^{+}\right]=\alpha[\mathrm{HCl}]$ and α is the degree of ionization of HCl in $\mathrm{NaCl}-\mathrm{HCl}$ solutions
The electrochemical potential (EMF) between solutions of various H^{+} concentrations was measured with a set of electrodes.
Pt: $\mathrm{H}_{2}(\mathrm{~g}: 1 \mathrm{~atm}$, sol'n x$) \mid$ salt bridge \mid Pt: $\mathrm{H}_{2}(\mathrm{~g}: 1 \mathrm{~atm}, 1 \mathrm{~N} \mathrm{HCl})$ Pt: $\mathrm{H}_{2}(\mathrm{~g}: 1 \mathrm{~atm}$, sol'n x$) \mid$ salt bridge $\mid \mathrm{Hg}_{2} \mathrm{Cl}_{2} / \mathrm{Hg}$ (calomel)
By definition, the potential at the Pt: H_{2} (g: $\left.1 \mathrm{~atm}, 1 \mathrm{~N} \mathrm{HCl}\right)$ electrode is null:

$$
\begin{aligned}
& 2 \mathrm{H}^{+}+2 \mathrm{é} \leftarrow \rightarrow \mathrm{H}_{2}(\mathrm{~g}) \quad \Delta \mathrm{G}^{\mathrm{o}}=\mathrm{o}, \mathrm{E}_{\mathrm{h}}{ }^{\mathrm{o}}=\mathrm{o} \text { volt } \\
& \mathrm{E}_{\mathrm{h}}(\text { calomel })=+\mathrm{o} 244 \text { volt }
\end{aligned}
$$

pH measurements

As modern formulations of thermodynamic concepts and theories of electrolyte solutions were developed, it was shown that the electromotive force (EMF) of a galvanic cell is related directly to the activity rather than concentrations of the redox couple involved in the reaction.
Hence, in 1924, Sorensen and Linderstrom-Lang proposed a new acidity unit:

$$
\mathrm{p}_{\mathrm{a}}\left(\mathrm{H}^{+}\right)=-\log \mathrm{a}\left(\mathrm{H}^{+}\right)
$$

Eventually, it was recognized that the activity of a single ion plays no real part in the EMF of a galvanic cell ...

Nevertheless, there remained a need to have a reproducible pH scale based on a convenient method to characterize acid-base reactions.

Operational definition of pH

Reference electrode \mid Concentrated KCl sol'n $\|$ Test solution | $\begin{array}{c}\text { electrode reversible } \\ \text { to hydrogen ion }\end{array}$ |
| :---: |

Reference electrode: $\mathrm{H}^{+} / \mathrm{H}_{2}, \mathrm{Hg}_{2} \mathrm{Cl}_{2} / \mathrm{Hg}$ or $\mathrm{AgCl} / \mathrm{Ag}$ Hydrogen ion reversible electrode: $\mathrm{H}^{+} / \mathrm{H}_{2}$, glass electrode

The use of the pH scale became widespread in 1935 when Arnold Beckman developed and sold a simple, portable pH meter.

Typical commercial reference \& glass electrodes

The potential of the reference electrode is set by the redox potential of the redox couple under standard state.

The glass electrode membrane works as a cation exchanger with a high specificity for H^{+}.

Combination pH glass electrode

Conventional and operational definitions of pH

The use of a glass electrode and salt bridge adds to the problem.

$$
\begin{array}{c|c|}
\mathrm{Ag} / \mathrm{AgCl} & \mathrm{KCl} \text { sol'n } \| \text { test solution }
\end{array} \begin{gathered}
\text { electrode reversible } \\
\text { to hydrogen ion }
\end{gathered}
$$

where E_{j} is the liquid junction potential between the two half-cells.

This potential is generated by the difference in composition between the solutions on both sides of the salt bridge.
$\mathrm{E}=\left\{\mathrm{E}^{\mathrm{o}}+\mathrm{RT} / \mathrm{F} \ln \left(\mathrm{Cl}^{-}\right)+\mathrm{E}_{\mathrm{j}}\right\}+\mathrm{RT} / \mathrm{F} \ln \left(\mathrm{H}^{+}\right)=\mathrm{E}^{\mathrm{o}^{\prime}}+\mathrm{RT} / \mathrm{F} \ln \left(\mathrm{H}^{+}\right)$
$=$ conventional definition where the value of $\mathrm{E}^{\mathrm{o}^{\prime}}$ and $\left(\mathrm{H}^{+}\right)$
depend on the value assigned to each other.
In the operational definition, pH of a solution X is related to the pH assigned to a standard (S):

$$
\mathrm{pH}(\mathrm{X})=\mathrm{pH}(\mathrm{~S})+[\mathrm{Ex}-\mathrm{Es} /(\mathrm{RT} \ln 10 / \mathrm{F})]
$$

NIST-traceable buffer solutions (infinite dilution convention)

Table 2.2.3.-2. - pH of reference buffer solutions at various temperatures

Temperature $\left({ }^{\circ} \mathrm{C}\right)$	Potassium tetraoxalate 0.05 M	Potassium hydrogen tartrate saturated at $25^{\circ} \mathrm{C}$	Potassium dihydrogen citrate 0.05 M	Potassium hydrogen phthalate 0.05 M	Potassium dihydrogen phosphate 0.025 M disodium hydrogen phosphate 0.025 M	Potassium dihydrogen phosphate 0.0087 M disodium hydrogen phosphate 0.0303 M	Disodium tetraborate 0.01 M	Sodium carbonate 0.025 M sodium bicarbonate 0.025 M	Calcium hydroxide saturated at $25^{\circ} \mathrm{C}$
	$\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{KO}_{8}, 2 \mathrm{H}_{2} \mathrm{O}$	$\mathrm{C}_{4} \mathrm{H}_{5} \mathrm{KO}_{6}$	$\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{KO}_{7}$	$\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{KO}{ }_{4}$	$\begin{aligned} & \mathrm{KH}_{2} \mathrm{PO}_{4}+ \\ & \mathrm{Na}_{2} \mathrm{HPO}_{4} \end{aligned}$	$\mathrm{KH}_{2} \mathrm{PO}_{4}+$ $\mathrm{Na}_{2} \mathrm{HPO}_{4}$	$\begin{gathered} \mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7} \\ 10 \mathrm{H}_{2} \mathrm{O} \end{gathered}$	$\begin{aligned} & \mathrm{Na}_{2} \mathrm{CO}_{3}+ \\ & \mathrm{NaHCO}_{3} \end{aligned}$	$\mathrm{Ca}(\mathrm{OH})_{2}$
15	1.67		3.80	4.00	6.90	7.45	9.28	10.12	12.81
20	1.68		3.79	4.00	6.88	7.43	9.23	10.06	12.63
25	1.68	3.56	3.78	4.01	6.87	7.41	9.18	10.01	12.45
30	1.68	3.55	3.77	4.02	6.85	7.40	9.14	9.97	12.29
35	1.69	3.55	3.76	4.02	6.84	7.39	9.10	9.93	12.13
$\frac{\Delta p H^{(1)}}{\Delta t}$	+ 0.001	-0.0014	-0.0022	+ 0.0012	-0.0028	-0.0028	-0.0082	-0.0096	-0.034

(1) pH variation per degree Celsius.

Alkalinity/acidity/neutralizing capacity

There are different ways to define these capacity factors, but all definitions essentially relate to the proton condition at a given reference state.

The concept of alkalinity

The concept of alkalinity is derived from the fundamental principle that solutions are electrically neutral (no net charge). In other words, the number of positive charges carried by cations is equal to the total number of charges carried by anions:

$$
\Sigma \mathrm{Z}_{\mathrm{i}}[\mathrm{i}]=\mathrm{o}
$$

where [i] is the concentration of i and Z is the charge of the $\mathrm{i}^{\text {th }}$ ion.
For the simple $\mathrm{CO}_{2}-\mathrm{H}_{2} \mathrm{O}$ system, the charge balance equation is:

$$
\begin{gathered}
{\left[\mathrm{H}^{+}\right]=\left[\mathrm{HCO}_{3}^{-}\right]+2\left[\mathrm{CO}_{3}{ }^{2-}\right]+\left[\mathrm{OH}^{-}\right]} \\
{[\mathrm{Alk}]=\mathrm{C}_{\mathrm{B}}=\left[\mathrm{HCO}_{3}^{-}\right]+2\left[\mathrm{CO}_{3}{ }^{2-}\right]+\left[\mathrm{OH}^{-}\right]-\left[\mathrm{H}^{+}\right]}
\end{gathered}
$$

In most natural waters, the acid-base system is dominated by the carbonate alkalinity. This alkalinity is mostly derived from the weathering of silicate and carbonate minerals by carbonic acid.

$$
\begin{gathered}
2 \mathrm{KAlSi}_{3} \mathrm{O}_{8}+2 \mathrm{H}_{2} \mathrm{CO}_{3}^{*}+9 \mathrm{H}_{2} \mathrm{O} \leftarrow \mathrm{Al}_{2} \mathrm{Si}_{2} \mathrm{O}_{5}(\mathrm{OH})_{4}+2 \mathrm{~K}^{+}+4 \mathrm{Si}(\mathrm{OH})_{4}+2 \mathrm{HCO}_{3}^{-} \\
{\mathrm{CaMg}\left(\mathrm{CO}_{3}\right)_{2}+2 \mathrm{H}_{2} \mathrm{CO}_{3}^{*} \leftarrow \mathrm{Ca}^{2+}+\mathrm{Mg}^{2+}+4 \mathrm{HCO}_{3}^{-}}_{\mathrm{CaCO}_{3}+\mathrm{H}_{2} \mathrm{CO}_{3} \leftarrow \rightarrow \mathrm{Ca}^{2+}+2 \mathrm{HCO}_{3}^{-}}
\end{gathered}
$$

Alkalinity/acidity/neutralizing capacity

In a more complex aqueous systems one may have to include other bases if they are present in relatively significant concentrations:
$[\mathrm{Alk}]=\left[\mathrm{HCO}_{3}^{-}\right]+2\left[\mathrm{CO}_{3}{ }^{2-}\right]+\left[\mathrm{NH}_{3}\right]+\left[\mathrm{HS}^{-}\right]+2\left[\mathrm{~S}^{2-}\right]+\left[\mathrm{H}_{3} \mathrm{SiO}_{4}^{-}\right]+2\left[\mathrm{H}_{2} \mathrm{SiO}_{4}{ }^{2-}\right]+$ $\left[\mathrm{B}(\mathrm{OH})_{4}^{-}\right]+\left[\mathrm{Org}^{-}\right]+\left[\mathrm{HPO}_{4}^{2-}\right]+2\left[\mathrm{PO}_{4}^{3-}\right]-\left[\mathrm{H}_{3} \mathrm{PO}_{4}\right]+\left[\mathrm{OH}^{-}\right]-\left[\mathrm{H}^{+}\right]$
The reference state remains $\mathrm{H}_{2} \mathrm{CO}_{3}{ }^{*}$, so that species such as $\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}$are not titrated into $\mathrm{H}_{3} \mathrm{PO}_{4}$ since it is a stronger acid than $\mathrm{H}_{2} \mathrm{CO}_{3}{ }^{*}$.

If a natural water contains more protons than that given by the zero proton condition (or the $\mathrm{H}_{2} \mathrm{CO}_{3}{ }^{*}$ equivalence point - contains acids stronger than $\mathrm{H}_{2} \mathrm{CO}_{3}{ }^{*}$), then this water contains H-acidity (H-Acy) or mineral acidity.

$$
[\mathrm{H}-\mathrm{Acy}]=\left[\mathrm{H}^{+}\right]-\left(\left[\mathrm{OH}^{-}\right]-\left[\mathrm{HCO}_{3}^{-}\right]-2\left[\mathrm{CO}_{3}^{2-}\right]\right)=-[\mathrm{Alk}]
$$

[H-Acy] can be determined by an alkalimetric titration (i.e., with a strong base such as NaOH) of the acid solution to the $\mathrm{H}_{2} \mathrm{CO}_{3}{ }^{*}$ end-point. This corresponds to the acid content of the solution beyond that which is contributed by acids stronger than $\mathrm{H}_{2} \mathrm{CO}_{3}{ }^{*}$.

Alkalinity/acidity/neutralizing capacity

There are a number of other conceptual definitions of the acid-neutralizing and the base-neutralizing capacities of aquatic systems. The various definitions algebraically express the proton excess or proton deficiency of the system with respect to a given reference level (generally $\mathrm{H}_{2} \mathrm{CO}_{3}{ }^{*}, \mathrm{HCO}_{3}{ }^{-}$, or $\mathrm{CO}_{3}{ }^{2-}$).
For example, the acidity of a water sample is given by:

$$
[\mathrm{Acy}]=2\left[\mathrm{H}_{2} \mathrm{CO}_{3}{ }^{*}\right]+\left[\mathrm{HCO}_{3}^{-}\right]+\left[\mathrm{H}^{+}\right]-\left[\mathrm{OH}^{-}\right]=\mathrm{C}_{\mathrm{A}}
$$

where [Acy] is given in equivalents per liter. In this case, the reference state is $\mathrm{CO}_{3}{ }^{2-}$ instead of $\mathrm{H}_{2} \mathrm{CO}_{3}{ }^{*}$.

For an acid-mine drainage system, the total acidity might be given by:

$$
\begin{aligned}
{[\mathrm{Acy}]=\left[\mathrm{H}^{+}\right] } & +\left[\mathrm{HSO}_{4}^{-}\right]+2\left[\mathrm{Fe}^{2+}\right]+3\left[\mathrm{Fe}^{3+}\right]+2\left[\mathrm{FeOH}^{2+}\right]+3\left[\mathrm{Al}^{++}\right]+2\left[\mathrm{H}_{2} \mathrm{CO}_{3}^{*}\right] \\
& +\left[\mathrm{HCO}_{3}^{-}\right]-\left[\mathrm{OH}^{-}\right]
\end{aligned}
$$

The reference state remains the same, $\mathrm{CO}_{3}{ }^{2-}$. In this case we have simply summed up those species present in solution which can donate protons before $\mathrm{HCO}_{3}{ }^{-}$is converted to $\mathrm{CO}_{3}{ }^{2-}$.

Alkalinity/acidity/neutralizing capacity

Figure 5.6 The cankmate distrilution diagram of a solmion with comsant $C_{r}=2.5 \times$ $10^{\prime} \mathrm{M}$ showing (a) the strong acid titration curve for the same solution from pll 12 to 3 and strong hase titration curve hetween pll 3 and 12. Dashed straight lines in (b) indicate concentrations of H^{+}and OH^{-}, which are independent of C_{r}. Mowified affer V. L. Sneeyink and D. Jenkins, Water Chemistn: Copyright © 1980 by John Wiley \& Sons, Inc. Used by permission of John Wiley \& Sons, Inc.

The pH values at the respective equivalence points for the acidity and alkalinity titrations (~ 4.3 and 10.3) represent approximate thresholds beyond which most life processes in natural waters are seriously impaired.

They represent convenient measures for estimating the maximum capacity of a natural water to neutralize acidic or caustic wastes without extreme disturbance of biological activity.

Alkalinity/acidity/neutralizing capacity

Alkalinity/acidity/neutralizing capacity

Alkalinity/acidity/neutralizing capacity

Unlike the individual concentrations of the pH -sensitive species (e.g., $\mathrm{H}_{2} \mathrm{CO}_{3}{ }^{*}$, $\mathrm{HCO}_{3}{ }^{-}, \mathrm{B}(\mathrm{OH})_{4}{ }^{-}$, etc.) and $\mathrm{pH}, \mathrm{ANC}$ and BNC are conservative properties of the system that are pressure and temperature independent.

$$
[\text { Alk }]=\left(\mathrm{V}_{\mathrm{a}}[\text { Alk }]_{\mathrm{a}}+\mathrm{V}_{\mathrm{b}}[\text { Alk }]_{\mathrm{b}}\right) /\left(\mathrm{V}_{\mathrm{a}}+\mathrm{V}_{\mathrm{b}}\right)
$$

The same is true of C_{T}, if the system is closed to the atmosphere:

$$
\mathrm{C}_{\mathrm{T}}=\Sigma \mathrm{CO}_{2}=\left(\mathrm{V}_{\mathrm{a}} \mathrm{C}_{\mathrm{T}-\mathrm{a}}+\mathrm{V}_{\mathrm{b}} \mathrm{C}_{\mathrm{T}-\mathrm{b}}\right) /\left(\mathrm{V}_{\mathrm{a}}+\mathrm{V}_{\mathrm{b}}\right)
$$

Whereas the addition or removal of CO_{2}, or more rigorously $\mathrm{H}_{2} \mathrm{CO}_{3}{ }^{*}$ will affect C_{T}, it does not change the alkalinity of a solution.

$$
[\mathrm{Alk}]=\mathrm{C}_{\mathrm{B}}=\left[\mathrm{HCO}_{3}^{-}\right]+2\left[\mathrm{CO}_{3}^{2-}\right]+\left[\mathrm{OH}^{-}\right]-\left[\mathrm{H}^{+}\right]
$$

Alkalinity/acidity/neutralizing capacity

Figure 4.9. Aqueous carbonate species in equilibrium with $p_{\mathrm{co}}=10^{-3.5} \mathrm{~atm}$ (see Figure 4.5). At pH values different from that of a pure CO_{2} solution, the solution contains either alkalinity (Alk) or mineral acidity (H-Acy).

Acid-base titration

(strong acid titrated by a strong base)

$$
\begin{aligned}
& \mathrm{HCl}+\mathrm{NaOH} \leftarrow \rightarrow \mathrm{Na}^{+}+\mathrm{Cl}^{-}+\mathrm{H}^{+}+\mathrm{OH}^{-} \\
& \text {At } \mathrm{V}=\mathrm{o},\left[\mathrm{H}^{+}\right]=\left[\mathrm{Cl}^{-}\right]+\left[\mathrm{OH}^{-}\right] \text {and } \\
& \qquad \Sigma \mathrm{Cl}=\left[\mathrm{Cl}^{-}\right]+\left[\mathrm{HCl}^{\circ}\right]=\mathrm{C}_{\mathrm{A}} \\
& \text { At } \mathrm{V} \neq \mathrm{o},\left[\mathrm{Na}^{+}\right]+\left[\mathrm{H}^{+}\right]=\left[\mathrm{Cl}^{-}\right]+\left[\mathrm{OH}^{-}\right] \\
& \rightarrow \mathrm{C}_{\mathrm{B}}=\left[\mathrm{Na}^{+}\right]=\left[\mathrm{Cl}^{-}\right]+\left[\mathrm{OH}^{-}\right]-\left[\mathrm{H}^{+}\right]
\end{aligned}
$$

$\left[\mathrm{H}^{+}\right]=$acid in solution $=\mathrm{C}_{\mathrm{A}}-\mathrm{C}_{\mathrm{B}}=\left(\mathrm{V}_{\text {init }}\left[\mathrm{Cl}^{-}\right]_{\text {init }}-\mathrm{V}_{\text {tit }}\left[\mathrm{Na}^{+}\right]_{\text {tit }}\right) /\left(\mathrm{V}_{\text {init }}+\mathrm{V}_{\text {tit }}\right)$
At the equivalence point, $\mathrm{C}_{\mathrm{A}}=\mathrm{C}_{\mathrm{B}}=\left(\mathrm{V}_{\text {init }}\left[\mathrm{Cl}^{-}\right]_{\text {init }}\right)=\left(\mathrm{V}_{\text {tit }}\left[\mathrm{Na}^{+}\right]_{\text {tit }}\right)$
or $\left[\mathrm{OH}^{-}\right]=\left[\mathrm{H}^{+}\right] \rightarrow \mathrm{pH}=7$
Beyond the equivalence point, $\left[\mathrm{OH}^{-}\right]=$excess $\mathrm{OH}^{-}=\mathrm{C}_{\mathrm{B}}-\mathrm{C}_{\mathrm{A}}$

$$
=\left(\mathrm{V}_{\text {tit }}\left[\mathrm{Na}^{+}\right]_{\text {tit }}+\mathrm{V}_{\text {init }}\left[\mathrm{Cl}^{-}\right]_{\text {init }}\right) / \mathrm{V}_{\text {tot }}
$$

Choice of color indicators

Acid-base titration

(strong acid titrated by a strong base)

Acid-base titration

(strong acid titrated by a strong base)

Acid-base titration

Titration Curves

Acid-base titration (weak acid titrated by a strong base)

Assuming that we are titrating 40 mL of a o. 1 M HA with 0.1 M NaOH

$$
\mathrm{HA}+\mathrm{NaOH} \longleftrightarrow \rightarrow \mathrm{Na}^{+}+\mathrm{A}^{-}+\mathrm{H}^{+}+\mathrm{OH}^{-}
$$

Reactions
$\mathrm{HA} \leftarrow \rightarrow \mathrm{H}^{+}+\mathrm{A}^{-}$
Mass action
$\mathrm{K}_{\mathrm{a}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{A}^{-}\right] /[\mathrm{HA}]$
Equilibrium constants
$\mathrm{H}_{2} \mathrm{O} \longleftrightarrow \rightarrow \mathrm{H}^{+}+\mathrm{OH}^{-}$
Charge balance: $\left[\mathrm{H}^{+}\right]+\left[\mathrm{Na}^{+}\right]=\left[\mathrm{A}^{-}\right]+\left[\mathrm{OH}^{-}\right]$
Mass balance: $\Sigma[\mathrm{A}]=[\mathrm{HA}]_{\mathrm{O}}=[\mathrm{HA}]+\left[\mathrm{A}^{-}\right]$
$\mathrm{C}_{\mathrm{B}}=\left[\mathrm{Na}^{+}\right]=\left[\mathrm{A}^{-}\right]+\left[\mathrm{OH}^{-}\right]-\left[\mathrm{H}^{+}\right]$
$\mathrm{C}_{\mathrm{A}}=\Sigma[\mathrm{A}]=[\mathrm{HA}]_{\mathrm{o}}=[\mathrm{HA}]+\left[\mathrm{A}^{-}\right]$
At any point along the titration curve:

$$
\left[\mathrm{H}^{+}\right]=\left[\mathrm{A}^{-}\right]+\left[\mathrm{OH}^{-}\right]-\left[\mathrm{Na}^{+}\right]=\frac{\left[\mathrm{HA}_{0}\right.}{1+\left(\left[\mathrm{H}^{+}\right] / \mathrm{K}_{\mathrm{a}}\right)}+\frac{\mathrm{K}_{\mathrm{W}-}}{\left[\mathrm{H}^{+}\right]}-\left[\mathrm{Na}^{+}\right]
$$

Acid-base titration (weak acid titrated by a strong base)

```
At v =o, [H+]=(K
mid-way to the equivalence point, [HA] = [A-], pH=pK
at the equivalence point, C}\mp@subsup{\textrm{A}}{\textrm{A}}{=}\mp@subsup{\textrm{C}}{B}{},[\mp@subsup{\textrm{H}}{}{+}]=\mp@subsup{K}{W}{}/(\mp@subsup{\textrm{K}}{\textrm{b}}{}[\textrm{A}]\mp@subsup{)}{}{0.5
beyond the equivalence point, [OH-] = C }\mp@subsup{\textrm{B}}{}{-}-\mp@subsup{\textrm{C}}{\textrm{A}}{}=\mathrm{ excess OH
```


Acid-base titration

Titration of 40.00 mL of 0.1000 M HPr

Acid-base titration

(polyprotic acid titrated by a strong base)

Titration of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ with HCl

Buffer capacity

pH is an intensity factor, not to be confused with the capacity of a solution to give or accept a proton (acidity, alkalinity), also to be distinguished from the buffer capacity of the solution.

The buffer capacity of a solution is a measure of its ability to resist changes of pH upon the addition of a strong acid or base. In natural waters, pH buffering is mostly due to the interaction of weak acids and bases and their salts with water. The buffer capacity is defined as:

$$
\beta=\mathrm{dC}_{\mathrm{B}} / \mathrm{dpH}=-\mathrm{dC}_{\mathrm{A}} / \mathrm{dpH}
$$

where dC_{A} (or dC_{B}) is an infinitesimal addition of strong acid (or base) and dpH is the corresponding change in $\mathrm{pH} . \beta$ is simply the inverse slope of the alkalinity or acidity titration curve and is always reported as a positive value.

Buffer systems

To withstand the addition of strong acid or strong base without changing its pH , a buffer solution must contain an acidic component that can neutralize added OH^{-}ion and a basic component that can neutralize added $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$. They cannot be just any acid and base, however, because they must be present in the same solution without neutralizing each other.

In the presence of a conjugate acid-base pair, pH changes only slightly upon the addition of a strong acid or base.

Reactions

$\mathrm{CH}_{3} \mathrm{COOH}^{\circ} \leftarrow \mathrm{H}^{+}+\mathrm{CH}_{3} \mathrm{COO}^{-}$ $\mathrm{H}_{2} \mathrm{O} \longleftrightarrow \rightarrow \mathrm{H}^{+}+\mathrm{OH}^{-}$
$\mathrm{CH}_{3} \mathrm{COONa}^{\circ} \longleftrightarrow \mathrm{Na}^{+}+\mathrm{CH}_{3} \mathrm{COOH}^{-}$
$\mathrm{NaOH}^{\circ} \longleftrightarrow \rightarrow \mathrm{Na}^{+}+\mathrm{OH}^{-}$

Mass Action Equations
$\mathrm{K}_{\mathrm{a}}=1.85 \times 10^{-5}$ or $\mathrm{pK}_{\mathrm{a}}=4.75$
$\mathrm{K}_{\mathrm{W}}=10^{-14} \quad$ or $\mathrm{pK}_{\mathrm{W}}=14$
$\mathrm{pK}_{(3)}=-\mathbf{o . 1}$
$\mathrm{pK}_{(4)}=-0.2$

For our purposes we can ignore $\left[\mathrm{NaAc}^{\circ}\right]$ and $\left[\mathrm{NaOH}^{\circ}\right]$ since they are almost completely dissociated.
Solving for $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$, we obtain: $\quad\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\mathrm{K}_{\mathrm{a}} \mathrm{x}\left[\mathrm{CH}_{3} \mathrm{COOH}\right] /\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]$ or $\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right] /\left[\mathrm{CH}_{3} \mathrm{COOH}\right]$
The buffer is therefore most effective when the components of the conjugate pair have similar concentrations.

Buffer systems

$$
\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \left(\left[\mathrm{A}^{-}\right] /[\mathrm{HA}]\right)
$$

Buffer capacity of pure water

To calculate the buffer capacity of pure water we will assume that it is being titrated with NaOH .

Charge balance equation: $\left[\mathrm{Na}^{+}\right]+\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right]$
Mass balance for the added base $\mathrm{C}_{\mathrm{B}}=\left[\mathrm{Na}^{+}\right]=\left[\mathrm{OH}^{-}\right]-\left[\mathrm{H}^{+}\right]$
Substituting in terms of $\left[\mathrm{H}^{+}\right]$:

$$
\begin{gathered}
\mathrm{C}_{\mathrm{B}}=\mathrm{K}_{\mathrm{W}} /\left[\mathrm{H}^{+}\right]-\left[\mathrm{H}^{+}\right] \\
\mathrm{dC}_{\mathrm{B}}=\left\{-\mathrm{K}_{\mathrm{W}} /\left[\mathrm{H}^{+}\right]^{2}-1\right\} \mathrm{d}\left[\mathrm{H}^{+}\right]
\end{gathered}
$$

Since $\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=-\ln \left[\mathrm{H}^{+}\right] / 2.303$,

$$
\mathrm{d}\left[\mathrm{H}^{+}\right]=\mathrm{dpH}\left(-2.303\left[\mathrm{H}^{+}\right]\right)
$$

Substituting for $\mathrm{d}\left[\mathrm{H}^{+}\right]$, we obtain:

$$
\mathrm{dC}_{\mathrm{B}} / \mathrm{dpH}=\beta\left(\mathrm{H}_{2} \mathrm{O}\right)=2.303\left\{\mathrm{~K}_{\mathrm{W}} /\left[\mathrm{H}^{+}\right]+\left[\mathrm{H}^{+}\right]\right\}=2.303\left\{\left[\mathrm{OH}^{-}\right]+\left[\mathrm{H}^{+}\right]\right\}
$$

Buffer capacity of pure water

Figure 5.10 A linear plot of the buffer capacity of carbonic acid species as a function of pH for $C_{T}=10^{-3.0} \mathrm{M}$ showing that the maximum buffer capacity equals $0.58 C_{r}$. and occurs at $\mathrm{pH}=\mathrm{p} K_{1}\left(\mathrm{H}_{2} \mathrm{CO}_{3}^{\circ}\right)=6.35$. The lower curve is the buffer capacity of water, $\beta_{\mathrm{H}_{2} \mathrm{O}}$.
β is simply the inverse slope of the alkalinity or acidity titration curve and is always reported as a positive value.

Buffer capacity of a weak acid

$$
\mathrm{HA} \leftrightarrow \rightarrow \mathrm{H}^{+}+\mathrm{A}^{-}
$$

$\mathrm{K}_{\mathrm{a}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{A}^{-}\right] /[\mathrm{HA}]$
Charge balance: $\left[\mathrm{Na}^{+}\right]+\left[\mathrm{H}^{+}\right]=\left[\mathrm{A}^{-}\right]+\left[\mathrm{OH}^{-}\right]$, or $\mathrm{C}_{\mathrm{B}}=\left[\mathrm{Na}^{+}\right]=\left[\mathrm{A}^{-}\right]+\left[\mathrm{OH}^{-}\right]-\left[\mathrm{H}^{+}\right]$
Mass balance: $\mathrm{C}_{\mathrm{A}}=\Sigma[\mathrm{A}]=[\mathrm{HA}]+[\mathrm{A}-]$
Substituting $\left[\mathrm{A}^{-}\right]=\mathrm{K}_{\mathrm{a}} \mathrm{C}_{\mathrm{A}} /\left(\mathrm{K}_{\mathrm{a}}+\left[\mathrm{H}^{+}\right]\right)$into $\mathrm{C}_{\mathrm{B}}=\mathrm{K}_{\mathrm{a}} \mathrm{C}_{\mathrm{A}} /\left(\mathrm{K}_{\mathrm{a}}+\left[\mathrm{H}^{+}\right]\right)+\mathrm{K}_{\mathrm{W}} /\left[\mathrm{H}^{+}\right]-\left[\mathrm{H}^{+}\right]$
Differentiating, we find: $-\mathrm{dC}_{\mathrm{B}} / \mathrm{d}\left[\mathrm{H}^{+}\right]=\left\{\mathrm{K}_{\mathrm{a}} \mathrm{C}_{\mathrm{A}} /\left(\mathrm{K}_{\mathrm{a}}+\left[\mathrm{H}^{+}\right]\right)^{2}+\mathrm{K}_{\mathrm{W}} /\left[\mathrm{H}^{+}\right]^{2}+1\right\}$
Substituting $\mathrm{d}\left[\mathrm{H}^{+}\right]=-2.303\left[\mathrm{H}^{+}\right] \mathrm{dpH}$, we obtain:

$$
\mathrm{dC}_{\mathrm{B}} / \mathrm{dpH}=\beta=2.303\left\{\left[\mathrm{H}^{+}\right]+\mathrm{K}_{\mathrm{W}} /\left[\mathrm{H}^{+}\right]+\mathrm{K}_{\mathrm{a}} \mathrm{C}_{\mathrm{A}}\left[\mathrm{H}^{+}\right] /\left(\mathrm{K}_{\mathrm{a}}+\left[\mathrm{H}^{+}\right]\right)^{2}\right\}
$$

The first two terms in the bracket are the buffer capacity of water, and the third is the buffer capacity due to the weak acid. For intermediate pH 's, the water terms become negligible and β reduces to:

$$
\beta=2.303 \mathrm{~K}_{\mathrm{a}} \mathrm{C}_{\mathrm{A}}\left\{\left[\mathrm{H}^{+}\right] /\left(\mathrm{K}_{\mathrm{a}}+\left[\mathrm{H}^{+}\right]\right)^{2}\right\}
$$

As you would expect from the slope of the titration curve, the maximum buffer capacity for a weak acid occurs at a $\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}$

Buffer capacity of pure water

Figure 5.10 A linear plot of the buffer capacity of carbonic acid species as a function of pH for $C_{T}=10^{-3.0} \mathrm{M}$ showing that the maximum buffer capacity equals $0.58 C_{r}$. and occurs at $\mathrm{pH}=\mathrm{p} K_{1}\left(\mathrm{H}_{2} \mathrm{CO}_{3}^{\circ}\right)=6.35$. The lower curve is the buffer capacity of water, $\beta_{\mathrm{H}, \mathrm{O}}$.
β is simply the inverse slope of the alkalinity or acidity titration curve and is always reported as a positive value.

Buffer capacity of a polyprotic acid

For a polyprotic acid (e.g., $\mathrm{H}_{4} \mathrm{~B}$), the buffer capacity or index is the sum of the contributions from each successive acid species, or in general terms:

$$
\begin{aligned}
\beta & =\beta\left(\mathrm{H}_{2} \mathrm{O}\right)+\beta\left(\mathrm{H}^{3} \mathrm{~B}^{-}\right)+\beta\left(\mathrm{H}_{2} \mathrm{~B}^{2-}\right)+\beta\left(\mathrm{HB}^{3-}\right)+\beta\left(\mathrm{B}^{-}\right) \\
& =2.303\left[\mathrm{H}^{+}\right]+\mathrm{K}_{\mathrm{W}} /\left[\mathrm{H}^{+}\right]+\mathrm{K}_{1} \mathrm{C}_{\mathrm{A}}\left[\mathrm{H}^{+}\right] /\left(\mathrm{K}_{1}+\left[\mathrm{H}^{+}\right]\right)^{2}+\mathrm{K}_{2} \mathrm{C}_{\mathrm{A}}\left[\mathrm{H}^{+}\right] /\left(\mathrm{K}_{2}+\left[\mathrm{H}^{+}\right]\right)^{2}+\ldots
\end{aligned}
$$

where C_{A} is the total concentration of acid species and K_{1} and K_{2} are the first and second stepwise dissociation constants of the acids.

$$
\beta=\mathrm{dC}_{\mathrm{B}} / \mathrm{dpH}=-\mathrm{dC}_{\mathrm{A}} / \mathrm{dpH} \approx 2.303 \Sigma \lambda_{\mathrm{i}}^{2}\left[\mathrm{X}_{\mathrm{i}}\right]
$$

Where λ is the neutralizing capacity of species i and $[\mathrm{X}]$ is the concentration of compounds capable of neutralizing a proton or OH^{-}.

The pH of most natural waters is buffered by the carbonate system:

$$
\mathrm{CO}_{3}^{2-} \underset{\mathrm{OH}^{-}}{\stackrel{\mathrm{H}^{+}}{\rightleftarrows}} \mathrm{HCO}_{3}-\stackrel{\mathrm{H}^{+}}{\rightleftarrows} \mathrm{H}_{2} \mathrm{CO}_{3} \rightleftarrows \mathrm{CO}_{2} \uparrow+\mathrm{H}_{2} \mathrm{O}
$$

Buffer capacity of natural waters

If a parcel of water to which the acid was added is in contact with the atmosphere, the excess CO_{2} produced by the sequential protonation of $\mathrm{CO}_{3}{ }^{2-}$ and $\mathrm{HCO}_{3}{ }^{-}$will be able to escape to the atmosphere further reducing the increase in pH .

$$
\beta=2.303\left(\left[\mathrm{HCO}_{3}^{-}\right]+4\left[\mathrm{CO}_{3}^{2-}\right]+\left[\mathrm{H}^{+}\right]+\left[\mathrm{OH}^{-}\right]\right)
$$

If the parcel of water is isolated from the atmosphere and cannot rid itself of the generated CO_{2}, its buffering mechanisms is diminished.

$$
\beta=2.303\left(\left[\mathrm{H}_{2} \mathrm{CO}_{3}^{*}\right]+\left[\mathrm{CO}_{3}^{2-}\right]+\left[\mathrm{H}^{+}\right]+\left[\mathrm{OH}^{-}\right]\right)
$$

Consequently, at $\mathrm{pH} \approx 8$, the buffer capacity of the carbonate system in equilibrium with a gas phase is roughly 100 times greater than that of an isolated aqueous phase.

On the other hand, the buffer capacity of the system would be greatly increased by the presence of solid CaCO_{3}, since acid added to the system would readily react with the solid:

$$
\mathrm{CaCO}_{3}+\mathrm{H}^{+} \leftarrow \mathrm{Ca}^{2+}+\mathrm{HCO}_{3}^{-}
$$

in which case, if the system is open to the atmosphere:

$$
\beta=2.303\left(4\left[\mathrm{Ca}^{2+}\right]-\left[\mathrm{HCO}_{3}^{-}\right]+4\left[\mathrm{CO}_{3}^{2-}\right]+\left[\mathrm{H}^{+}\right]+\left[\mathrm{OH}^{-}\right]\right)
$$

Buffer capacity provided by the carbonic acid system in aqueous solutions

Figure 5.10 A linear plot of the buffer capacity of carbonic acid species as a function of pH for $C_{T}=10^{-3.0} \mathrm{M}$ showing that the maximum buffer capacity equals $0.58 C_{T}$, and occurs at $\mathrm{pH}=\mathrm{p} K_{1}\left(\mathrm{H}_{2} \mathrm{CO}_{3}^{\circ}\right)=6.35$. The lower curve is the buffer capacity of water, $\beta_{\mathrm{H}_{2} \mathrm{O}}$.

Figure 5.11 A log piot of the buffer capacity due to carbonic acid species for $C_{T}=10^{-3.0} \mathrm{M}$ (see Fig. 5.10): at saturation with respect to calcite for $C_{T}=10^{-3.0} \mathrm{M}$: and for equilibrium between the clays illite and kaoiinite. The lower curve is $\beta_{\mathrm{H}, \mathrm{O}}$ -

From: Langmuir (1997) Aqueous Environmental Geochemistry

Buffer capacity of natural waters

On longer time scales, it has been proposed that the pH of natural waters should be regulated by reactions with clay minerals, such as between kaolinite and illite or muscovite. This reaction can be written as:

$$
\underset{\substack{2 \mathrm{KAl}_{3} \mathrm{Si}_{3} \mathrm{O}_{10}(\mathrm{OH})_{2} \\ \text { illite }}}{\text { a }} \text { + } \mathrm{H}^{+}+3 \mathrm{H}_{2} \mathrm{O} \leftrightarrow \underset{3}{\leftrightarrows} \mathrm{Al}_{2} \mathrm{Si}_{2} \mathrm{O}_{5}(\mathrm{OH})_{4}+2 \mathrm{~K}^{+}
$$

for which the mass action law gives: $\mathrm{K}_{\mathrm{eq}}=\left[\mathrm{K}^{+}\right] /\left[\mathrm{H}^{+}\right]=10^{6.5}$
If we were to titrate a clay suspension with HCl , the charge balance equation could be written as:

$$
\begin{gathered}
{\left[\mathrm{H}^{+}\right]+\left[\mathrm{K}^{+}\right]=\left[\mathrm{OH}^{-}\right]+\left[\mathrm{Cl}^{-}\right]} \\
\text {or } \mathrm{C}_{\mathrm{A}}=\left[\mathrm{Cl}^{-}\right]=\left[\mathrm{K}^{+}\right]+\left[\mathrm{H}^{+}\right]-\left[\mathrm{OH}^{-}\right]=10^{6.5}\left[\mathrm{H}^{+}\right]+\left[\mathrm{H}^{+}\right]-10^{-14} /\left[\mathrm{H}^{+}\right]
\end{gathered}
$$

Taking the derivative, $\mathrm{dC}_{\mathrm{A}} / \mathrm{d}\left[\mathrm{H}^{+}\right]=\left(1+10^{6.5}+10^{-14} /\left[\mathrm{H}^{+}\right]^{2}\right)$
$\beta=-\mathrm{dC}_{\mathrm{A}} / \mathrm{dpH}=2.303\left[\mathrm{H}^{+}\right] \mathrm{dC}_{\mathrm{A}} / \mathrm{d}\left[\mathrm{H}^{+}\right]=2.303\left(1 \mathrm{H}^{+}\right]+\mathrm{K}_{\mathrm{W}} /\left[\mathrm{H}^{+}+10^{6.5}\left[\mathrm{H}^{+}\right]\right)$

